기계 학습을 응용한 많은 침입 탐지 시스템들에서 n-그램 접근 방법이 사용되고 있다. 그러나, n-그램 접근방법은 확장이 어렵고, 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, 일반화된 k-절단 서픽스트리 (generalized k-truncated suffix tree; k-TST) 기반의 n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하여 보았다. 제 안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신(support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 호스트 기반 침입 탐지 벤치마크 데이터와 비교하였다. 공개된 호스트 기반 침입 탐지 벤치마크 데이터인 뉴 멕시코 대학(University of New Mexico)의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배의 문제도 해결하면서, 동시에 더 정확한 침입 탐지기를 생성해냄을 알 수 있었다.
본 논문은 개인 사용자의 트윗을 분석하여 사용자의 감정 흐름을 모니터링할 수 있는 새로운 방법을 제안한다. 본 논문에서는 사용자의 감성 흐름을 정확하게 예측하기 위해서 기존의 텍스트 위주의 시스템과 달리 본 연구에서는 사용자가 쓴 텍스트와 영상 등으로부터 감성을 인식하는 멀티 모달 분석 기법이 개발된다. 제안된 방법에서는 먼저 어휘분석 및 문맥을 이용한 텍스트분석기와 학습기반의 영상감성인식기를 이용하여 텍스트 및 영상 트윗에 숨겨진 개별 감성을 추출한다. 이후 이들은 규칙기반 통합 방법에 의해 날짜별로 통합되고, 마지막으로 개인의 감성흐름을 보다 직관적으로 관측할 수 있도록 감성흐름그래프로 시각화한다. 제안된 방법의 효용성을 평가하기 위해 두 단계의 실험이 수행되었다. 먼저 4만여 개의 트윗으로부터 제안된 방법의 정확도 평가 실험이 수행되고, 최신 트윗 분석 기술과 비교 분석되었다. 두 번째 실험에서는 40명의 우울증을 가진 사용자와 일반사용자를 구분할 수 있는지에 대한 실험이 수행된 결과, 제안된 기술이 실제 사용자의 감성흐름을 모니터하는데 효율적임을 증명하였다.
본 연구는 심박변이도(HRV)와 인공신경망을 이용하여 강건하고 정확한 융복합 감정예측 모형인 EPNN (Emotion Prediction Neural Network)을 개발하는 것을 주요 연구목적으로 한다. 본 연구에서 제안하는 EPNN은 기존 유사연구와는 달리 은닉노드의 활성함수로서 하이퍼볼릭 탄젠트, 선형, 가우시안 함수를 융복합적으로 이용하여 모형의 정확도를 향상시킨다. 본 연구에서는 EPNN의 타당성을 검증하기 위하여 20명의 실험자를 대상으로 머니게임으로 감정을 유도한 후에 해당 실험자의 심박변이도 측정값을 입력자료로 사용하였다. 아울러 그들의 Valence와 Arousal을 EPNN의 출력값으로 사용하였다. 실험결과 Valence에 대한 F-Measure는 80%이고, Arousal의 경우 95%로 나타났다. 한편 EPNN의 타당성을 측정하기 위하여 기존 감정예측 연구에 사용된 경쟁모형인 인공신경망, 로지스틱 회귀분석, 서포트 벡터 머신, 랜덤 포레스트 모형과 성과를 비교하였다. 그 결과 본 연구에서 제안하는 EPNN이 더 우수한 감정예측 결과를 보였다. 본 연구의 결과는 향후 유비쿼터스 디지털 헬스 환경에서 사용되는 다양한 웨어러블 기기에 적용되어 사용자들의 일상생활 속에서 시시각각 변하는 감정을 정확히 예측하고 적절하게 관리하는데 적용될 수 있을 것이다.
최근 산업현장에서 기계의 자동화가 크게 가속화됨에 따라 자동화 기계의 관리 및 유지보수에 대한 중요성이 갈수록 커지고 있다. 자동화 기계에 부착된 센서의 고장이 발생할 경우 기계가 오동작함으로써 공정라인 운용에 막대한 피해가 발생할 수 있다. 이를 막기 위해 센서의 상태를 모니터링하고 고장의 진단 및 분류를 하는 것이 필요하다. 본 논문에서는 센서에서 발생하는 대표적인 고장 유형인 erratic fault, drift fault, hard-over fault, spike fault, stuck fault를 기계학습 알고리즘인 SVM과 CNN을 적용하여 검출하고 분류하였다. SVM의 학습 및 테스트를 위해 데이터 샘플들로부터 시간영역 통계 특징들을 추출하고 최적의 특징을 찾기 위해 유전 알고리즘(genetic algorithm)을 적용하였다. Multi-class를 분류하기 위해 multi-layer SVM을 구성하여 센서 고장을 분류하였다. CNN에 대해서는 데이터 샘플들을 사용하여 학습시키고 성능을 높이기 위해 앙상블 기법을 적용하였다. 시뮬레이션 결과를 통해 유전 알고리즘에 의해 선별된 특징들을 사용한 SVM의 분류 결과는 모든 특징이 사용된 SVM 분류기 보다는 성능이 향상되었으나 전반적으로 CNN의 성능이 SVM보다 우수한 것을 확인할 수 있었다.
시/주파수 분석은 생체 신호 처리에서 널리 사용되어왔다. 전기 생리학적 신호로부터 중요한 특징들을 추출함으로써 이 방법들은 특정 질병의 임상 병리학적 기전 해석이 가능하다. 하지만 이 방법은 신호가 안정하다는 가정 아래 적용되었으며 불안정한 시스템에서의 적용은 제한이 되어 있다. 본 연구에서는 비선형적이고 비정상적인 심실세동 심전도 파형의 분석을 위해 Hilbert-Huang 변환을 사용한 새로운 신호처리 방법을 제안하였다. Hilbert-Huang 변환은 경험모드분리법(EMD)과 힐버트 변환으로 크게 두 가지로 구성된다. Hilbert-Huang 변환은 EMD를 사용하여 각각의 특성을 지니고 있는 독립적인 내부모드함수들로 나누어지며, 힐버트 변환에 의해 순간 주파수와 크기를 구할 수 있게 된다. 이런 특성으로 신호의 국부적인 작용에 대하여 정확하게 설명할 수 있게 된다. 본 연구에서는 Hilbert-Huang 변환을 기반으로 심실세동 심전도 파형으로부터 두 종류의 파라미터(EMD-IF, EMD-FFT)를 추출하고 서포트 벡터 머신(Support Vector Machine)을 이용하여 소생성공 및 실패 여부 예측에 관하여 연구하였다. 평균적으로 민감도와 특이도는 각각 87.57%와 76.92%로 나타났다. Hilbert-Huang 변환은 더욱 정확하게 심실세동에서의 소생성공 예측을 가능하게 하였다.
본 논문에서는 무릎 MR 영상에서 반월상 연골의 자동 위치화, 다중 아틀라스 기반 지역적 가중 투표를 통한 반월상 연골 분할 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 방법을 제안한다. 첫째, 뼈와 무릎 관절 연골을 분할한 후 이를 이용하여 반월상 연골의 관심볼륨영역을 자동 위치화한다. 둘째, 반월상 연골의 관심볼륨영역에서 형상 및 밝기값 분포 가중치를 고려한 다중 아틀라스 기반 지역적 가중 투표를 통해 반월상 연골을 분할한다. 셋째, 밝기값이 유사한 측부 인대로의 누출을 제거하기 위해 형상 및 거리 가중치를 고려한 패치 기반 윤곽선 특징 분류를 통해 반월상 연골 분함을 개선한다. 제안 방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 내측 반월상 연골은 80.13%, 외측 반월상 연골은 80.81%를 보였으며 다중 아틀라스 기반 지역적 가중투표를 통한 분할 방법과 비교하여 내 측 및 외측 반월상 연 골 각각 7.25%, 1.31% 향상되었다.
수많은 플라스틱이 산업분야에 다양하게 사용되어지고 있다. 또한 많은 양의 플라스틱 폐기물들이 발생하고 있다. 재활용에 대한 연구는 환경오염 뿐만아니라 한정된 유용한 자원이 버려지는 것을 방지하기 위해 중요한 이슈로 부각되고 있다. 이렇기 때문에 폐플라스틱의 재활용은 재사용 관점에서 주목받고 있는 실정이다. 현재 재활용 센터에서는 플라스틱의 재질을 분류하기 위해 NIR 센서를 이용한 플라스틱 자동 분류 시스템을 구축 및 운용하고 있다. 하지만 흑색 플라스틱은 여전히 분류가 되지 않는 도전적인 목표로 남아있다. 카본 블랙이 포함된 흑색 플라스틱의 경우 검정색의 특성상 NIR 장비에서 나오는 빛을 흡수하기 때문에 분류에 어려움이 있다. 본 연구는 NIR 장비 대신 흑색 플라스틱을 분류하는 방법에 대한 연구이다. 흑색 플라스틱의 정성적, 정량적 분석을 위해 Raman 분광법을 사용하였다. 또한 분류기의 인식률을 높이기 위해 데이터를 특성을 분석하고 흑색 플라스틱을 좀 더 확실하게 분류하기 위해 Support Vector Machine(SVM), 주성분 분석법(PCA) 같은 알고리즘을 이용하였다.
예측 문제를 해결하기 위한 데이타마이닝 기법은 다양한 분야에서 주목받고 있다. 이것에 대한 한 예로 컴퓨터-기반의 질병의 예측 혹은 진단은 CDSS(Clinical Decision support System)에서 가장 중요한 요소이기도 하다. 이러한 예측 문제를 해결하기 위해서 RBF커널 같은 비선형 커널을 사용한 SVM이 가장 널리 사용되고 있는데, 이는 비선형 SVM이 어떠한 다른 분류기법보다 정확한 성능을 보이기 때문이다. 하지만 비선형 SVM을 사용한 경우에는 모델내부를 시각화하는 일이 어려워서 예측결과에 대한 직관적인 이해가 힘들고, 의학 전문가들은 이러한 비선형 SVM의 사용을 기피하고 있는 실정이다. Nomogram은 SVM을 시각화하기 위해 제안된 기법이다. 하지만 이는 선형 SVM의 경우에만 사용이 가능하고. 이 문제를 해결하기 위해서 LRBF 커널이 제안된 바 있다. LRBF 커널은 기존의 RBF 커널을 사용한 SVM과 대등한 결과를 보이면서도 예측결과의 선형적 분석도 가능하게 한다. 본 논문에서는 노모그램(Nomogram)과 LRBF 커널을 사용한 SVM이 통합되어 있는 예측 툴 VRIFA를 제안한다. 이 툴은 사용자와 상호작용하며 비선형 SVM 모델의 내부구조를 데이타의 각 속성별로 보여주는 방법으로 사용자가 예측결과를 직관적으로 이해하도록 도와준다. VRIFA는 Nomogram기반의 피쳐선택(feature selection) 기능도 포함하고 있는데, 이 기능은 예측결과에 부정적인 영향을 끼치거나 중복된 연관성을 보이는 속성을 제거함으로써 모델의 정확도를 높이는 데 기여한다. 그리고 데이터에 포함된 클래스의 비율이 한 쪽으로 치우쳐져 있는 경우에는 ROC 곡선 넓이(AUC)를 예측결과를 평가하기 위한 측도로 사용할 수 있다. 이 툴은 컴퓨터-기반의 질병 예측 혹은 질병의 위험 요소 분석에 대해 연구하는 연구자들에게 유용하게 사용될 것으로 전망하는 바이다.
문서-용어 빈도행렬은 그룹정보가 존재하는 문서들의 용어를 추출한 것으로 일반적인 텍스트 마이닝에서의 자료이다. 본 연구에서는 연구 분야 성격에 따른 문서 분류를 위해 문서-용어 빈도행렬을 생성하고, 전통적인 용어 가중치 함수인 TF-IDF와 최근 잘 알려진 용어 가중치 함수인 TF-IGM을 적용하였다. 또 용어 가중치가 적용된 문서-용어 가중행렬에 문서분류 정확도 향상을 위해 핵심어를 추출하여 문서-핵심어 가중행렬을 생성하였다. 핵심어가 추출된 행렬을 바탕으로, 심층 신경망을 이용해 문서를 분류하였다. 심층 신경망에서 최적의 모델을 찾기 위해 매개변수인 은닉층과 은닉노드수를 변화해가며 문서 분류 정확도를 확인하였다. 그 결과 8개의 은닉층을 가진 심층 신경망 모델이 가장 높은 정확도를 보였으며 매개변수 변화에 따른 모든 TF-IGM 문서 분류 정확도가 TF-IDF 문서 분류 정확도보다 높은 것을 확인하였다. 또한 개별 범주에 대한 문서 분류 분석 결과를 서포트 벡터 머신과 비교했을 때 심층 신경망이 대부분의 결과에서 더 좋은 정확도를 보임을 확인하였다.
인공신경망과 같은 기계학습에 기반한 네트워크 침입탐지/방지시스템은 특징 조합에 따라 탐지의 정확성과 효율성 측면에서 크게 영향을 받는다. 하지만 침입탐지에 사용 가능한 여러개의 특징들 중 정확성과 효율성 측면에서 최적의 특징 조합을 추출하는 특징 선택 문제는 많은 계산량을 요구한다. 본 논문에서는 NSL-KDD 데이터 집합에서 제공하는 6가지 서비스 거부 공격과 정상 트래픽을 구분해 내기 위한 최적 특징 조합 선택 문제를 다룬다. 최적 특징 조합 선택 문제를 해결하기 위해 대표적인 메타 휴리스틱 알고리즘 중 하나인 다중 시작 지역탐색 알고리즘에 기반한 최적 특징 선택 알고리즘을 제시한다. 제안한 특징 선택 알고리즘의 성능 평가를 위해 NSL-KDD 데이터를 상대로 41개의 특징 모두를 사용한 경우와 비교한다. 그리고 선택된 특징 조합을 사용했을 때 가장 높은 성능을 보여주는 기계학습 방법을 찾기위해 3가지 잘 알려진 기계학습 방법들 (베이즈 분류기와 인공신경망, 서포트 벡터 머신)을 사용해 성능을 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.