• Title/Summary/Keyword: 서포트 벡터

Search Result 338, Processing Time 0.023 seconds

Kernel Adatron Algorithm of Support Vector Machine for Function Approximation (함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘)

  • Seok, Kyung-Ha;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1867-1873
    • /
    • 2000
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Support vector machine (SVM) is a new and very promising classification, regression and function approximation technique developed by Vapnik and his group at AT&TG Bell Laboratories. However, it has failed to establish itself as common machine learning tool. This is partly due to the fact that this is not easy to implement, and its standard implementation requires the use of optimization package for quadratic programming (QP). In this appear we present simple iterative Kernel Adatron (KA) algorithm for function approximation and compare it with standard SVM algorithm using QP.

  • PDF

Discrimination System for Abusive Comments using Machine Learning (기계 학습을 이용한 악성 댓글 판별 시스템)

  • Shin, Hyo-jeong;Choi, So-Woon;Lee, Kyung-ho;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.178-180
    • /
    • 2015
  • 본 논문에서는 기계 학습(Machine Learning)을 이용하여 댓글의 악성 여부를 분류하는 시스템에 대해 설명한다. 댓글은 문장의 길이가 짧고 맞춤법이 잘 되어있지 않는 특성을 가지고 있다. 따라서 댓글 분석을 위해 형태소 분석 결과와 문자단위 Bi-gram, Tri-gram을 자질로 이용한다. 전처리 된 댓글에서 각 자질 추출 방법에 따라 자질을 추출한다. 추출된 자질을 이용하여 기계학습 알고리즘의 모델을 학습하고 댓글의 악성 여부 분류에 활용한다. 본 논문에서는 댓글의 악성 여부 판별을 위한 자질 추출방법을 제안하고 실험을 통해 이에 대한 효용성을 검증하였다.

  • PDF

Comparison of Methodologies for Characterizing Pedestrian-Vehicle Collisions (보행자-차량 충돌사고 특성분석 방법론 비교 연구)

  • Choi, Saerona;Jeong, Eunbi;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.53-66
    • /
    • 2013
  • The major purpose of this study is to evaluate methodologies to predict the injury severity of pedestrian-vehicle collisions. Methodologies to be evaluated and compared in this study include Binary Logistic Regression(BLR), Ordered Probit Model(OPM), Support Vector Machine(SVM) and Decision Tree(DT) method. Valuable insights into applying methodologies to analyze the characteristics of pedestrian injury severity are derived. For the purpose of identifying causal factors affecting the injury severity, statistical approaches such as BLR and OPM are recommended. On the other hand, to achieve better prediction performance, heuristic approaches such as SVM and DT are recommended. It is expected that the outcome of this study would be useful in developing various countermeasures for enhancing pedestrian safety.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Color Laser Printer Forensics through Wiener Filter and Gray Level Co-occurrence Matrix (위너 필터와 명암도 동시발생 행렬을 통한 컬러 레이저프린터 포렌식 기술)

  • Lee, Hae-Yeoun;Baek, Ji-Yeoun;Kong, Seung-Gyu;Lee, Heung-Su;Choi, Jung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.599-610
    • /
    • 2010
  • Color laser printers are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use their own printing process, each of printed papers from different printers has a little different invisible noise. After the wiener-filter is used to analyze the invisible noises from each printer, we extract some features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, we use total 2,597 images from 7 color laser printers. The results prove that the presented identification method performs well using the noise features of color printed images.

Comparison of the performance of classification algorithms using cytotoxicity data (세포독성 자료를 이용한 분류 알고리즘 성능 비교)

  • Yoon, Yeochang;Jeung, Eui Bae;Jo, Na Rae;Ju, Su In;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.417-426
    • /
    • 2018
  • An alternative developmental toxicity test using mouse embryonic stem cell derived embryoid bodies has been developed. This alternative method is not to administer chemicals to animals, but to treat chemicals with cells. This study suggests the use of Discriminant Analysis, Support Vector Machine, Artificial Neural Network and k-Nearest Neighbor. Algorithm performance was compared with accuracy and a weighted Cohen's kappa coefficient. In application, various classification techniques were applied to cytotoxicity data to classify drug toxicity and compare the results.

Spectrum Sensing based on Support Vector Machine using Wavelet Packet Decomposition in Cognitive Radio Systems (인지 무선 시스템에서 웨이블릿 패킷 분해를 이용한 서포트 벡터 머신 기반 스펙트럼 센싱)

  • Lee, Gyu-Hyung;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Spectrum sensing, the key technology of the cognitive radio networks, is used by a secondary user to determine the frequency state of a primary user. The energy detection in the spectrum sensing determines the presence or absence of a primary user according to the intensity of the allocated channel signal. Since this technique simply uses the strength of the signal for spectrum sensing, it is difficult to detect the signal of a primary user in the low SNR band. In this paper, we propose a way to combine spectrum sensing and support vector machine using wavelet packet decomposition to overcome performance degradation in low SNR band. In our proposed scheme, the sensing signals were extracted by wavelet packet decomposition and then used as training data and test data for support vector machine. The simulation results of the proposed scheme are compared with the energy detection using the AUC of the ROC curve and the accuracy according to the SNR band. With simulation results, we demonstrate that the proposed scheme show better determining performance than one of energy detection in the low SNR band.

Bankruptcy prediction using ensemble SVM model (앙상블 SVM 모형을 이용한 기업 부도 예측)

  • Choi, Ha Na;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1113-1125
    • /
    • 2013
  • Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.

Hierarchically penalized support vector machine for the classication of imbalanced data with grouped variables (그룹변수를 포함하는 불균형 자료의 분류분석을 위한 서포트 벡터 머신)

  • Kim, Eunkyung;Jhun, Myoungshic;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.961-975
    • /
    • 2016
  • The hierarchically penalized support vector machine (H-SVM) has been developed to perform simultaneous classification and input variable selection when input variables are naturally grouped or generated by factors. However, the H-SVM may suffer from estimation inefficiency because it applies the same amount of shrinkage to each variable without assessing its relative importance. In addition, when analyzing imbalanced data with uneven class sizes, the classification accuracy of the H-SVM may drop significantly in predicting minority class because its classifiers are undesirably biased toward the majority class. To remedy such problems, we propose the weighted adaptive H-SVM (WAH-SVM) method, which uses a adaptive tuning parameters to improve the performance of variable selection and the weights to differentiate the misclassification of data points between classes. Numerical results are presented to demonstrate the competitive performance of the proposed WAH-SVM over existing SVM methods.

Combining Support Vector Machine Recursive Feature Elimination and Intensity-dependent Normalization for Gene Selection in RNAseq (RNAseq 빅데이터에서 유전자 선택을 위한 밀집도-의존 정규화 기반의 서포트-벡터 머신 병합법)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In past few years, high-throughput sequencing, big-data generation, cloud computing, and computational biology are revolutionary. RNA sequencing is emerging as an attractive alternative to DNA microarrays. And the methods for constructing Gene Regulatory Network (GRN) from RNA-Seq are extremely lacking and urgently required. Because GRN has obtained substantial observation from genomics and bioinformatics, an elementary requirement of the GRN has been to maximize distinguishable genes. Despite of RNA sequencing techniques to generate a big amount of data, there are few computational methods to exploit the huge amount of the big data. Therefore, we have suggested a novel gene selection algorithm combining Support Vector Machines and Intensity-dependent normalization, which uses log differential expression ratio in RNAseq. It is an extended variation of support vector machine recursive feature elimination (SVM-RFE) algorithm. This algorithm accomplishes minimum relevancy with subsets of Big-Data, such as NCBI-GEO. The proposed algorithm was compared to the existing one which uses gene expression profiling DNA microarrays. It finds that the proposed algorithm have provided as convenient and quick method than previous because it uses all functions in R package and have more improvement with regard to the classification accuracy based on gene ontology and time consuming in terms of Big-Data. The comparison was performed based on the number of genes selected in RNAseq Big-Data.