The purpose of this study is to develop more accurate and robust emotion prediction neural network (EPNN) model by combining heart rate variability (HRV) and neural network. For the sake of improving the prediction performance more reliably, the proposed EPNN model is based on various types of activation functions like hyperbolic tangent, linear, and Gaussian functions, all of which are embedded in hidden nodes to improve its performance. In order to verify the validity of the proposed EPNN model, a number of HRV metrics were calculated from 20 valid and qualified participants whose emotions were induced by using money game. To add more rigor to the experiment, the participants' valence and arousal were checked and used as output node of the EPNN. The experiment results reveal that the F-Measure for Valence and Arousal is 80% and 95%, respectively, proving that the EPNN yields very robust and well-balanced performance. The EPNN performance was compared with competing models like neural network, logistic regression, support vector machine, and random forest. The EPNN was more accurate and reliable than those of the competing models. The results of this study can be effectively applied to many types of wearable computing devices when ubiquitous digital health environment becomes feasible and permeating into our everyday lives.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.2
/
pp.185-195
/
2018
As machines have been automated in the field of industries in recent years, it is a paramount importance to manage and maintain the automation machines. When a fault occurs in sensors attached to the machine, the machine may malfunction and further, a huge damage will be caused in the process line. To prevent the situation, the fault of sensors should be monitored, diagnosed and classified in a proper way. In the paper, we propose a sensor fault detection scheme based on SVM and CNN to detect and classify typical sensor errors such as erratic, drift, hard-over, spike, and stuck faults. Time-domain statistical features are utilized for the learning and testing in the proposed scheme, and the genetic algorithm is utilized to select the subset of optimal features. To classify multiple sensor faults, a multi-layer SVM is utilized, and ensemble technique is used for CNN. As a result, the SVM that utilizes a subset of features selected by the genetic algorithm provides better performance than the SVM that utilizes all the features. However, the performance of CNN is superior to that of the SVM.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.44
no.5
/
pp.45-54
/
2007
Time/frequency analysis has been extensively used in biomedical signal processing. By extracting some essential features from the electro-physiological signals, these methods are able to determine the clinical pathology mechanisms of some diseases. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. In this paper, we develop a new signal processing method using Hilbert-Huang Transform to perform analysis of the nonlinear and non-stationary ventricular fibrillation(VF). Hilbert-Huang Transform combines two major analytical theories: Empirical Mode Decomposition(EMD) and the Hilbert Transform. Hilbert-Huang Transform can be used to decompose natural data into independent Intrinsic Mode Functions using the theories of EMD. Furthermore, Hilbert-Huang Transform employs Hilbert Transform to determine instantaneous frequency and amplitude, and therefore can be used to accurately describe the local behavior of signals. This paper studied for Return Of Spontaneous Circulation(ROSC) and non-ROSC prediction performance by Support Vector Machine and three parameters(EMD-IF, EMD-FFT) extracted from ventricular fibrillation ECG waveform using Hilbert-Huang transform. On the average results of sensitivity and specificity were 87.35% and 76.88% respectively. Hilbert-Huang Transform shows that it enables us to predict the ROSC of VF more precisely.
Kim, SoonBeen;Kim, Hyeonjin;Hong, Helen;Wang, Joon Ho
Journal of the Korea Computer Graphics Society
/
v.24
no.4
/
pp.29-38
/
2018
In this paper, we propose an automatic segmentation method of meniscus in knee MR images by automatic meniscus localization, multi-atlas-based locally-weighted voting, and patch-based edge feature classification. First, after segmenting the bone and knee articular cartilage, the volume of interest of the meniscus is automatically localized. Second, the meniscus is segmented by multi-atlas-based locally-weighted voting taking into account the weights of shape and intensity distribution in the volume of interest of the meniscus. Finally, to remove leakage to the collateral ligaments with similar intensity, meniscus is refined using patch-based edge feature classification considering shape and distance weights. Dice similarity coefficient between proposed method and manual segmentation were 80.13% of medial meniscus and 80.81 % for lateral meniscus, and showed better results of 7.25% for medial meniscus and 1.31% for lateral meniscus compared to the multi-atlas-based locally-weighted voting.
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.5
/
pp.416-422
/
2016
Lots of plastics are widely used in a variety of industrial field. And the amount of plastic waste is massively produced. In the study of waste recycling, it is emerged as an important issue to prevent the waste of potentially useful resource materials as well as to reduce ecological damage. So, the recycling of plastic waste has been currently paid attention to from the view point of reuse. Existing automatic sorting system consist of near infrared ray (NIR) sensors to classify the types of plastics. But the classification of black plastics still remains a challenge. Black plastics which contains carbon black are not almost classified by NIR because of the characteristic of the light absorption of black plastics. This study is focused on handling how to identify black plastics instead of NIR. Raman spectroscopy is used to get qualitative as well as quantitative analysis of black plastics. In order to improve the performance of identification, Support Vector Machine(SVM) classifier and Principal Component Analysis(PCA) are exploited to more preferably classify some kinds of the black plastics, and to analyze the characteristic of each data.
Prediction problems are widely used in medical domains. For example, computer aided diagnosis or prognosis is a key component in a CDSS (Clinical Decision Support System). SVMs with nonlinear kernels like RBF kernels, have shown superior accuracy in prediction problems. However, they are not preferred by physicians for medical prediction problems because nonlinear SVMs are difficult to visualize, thus it is hard to provide intuitive interpretation of prediction results to physicians. Nomogram was proposed to visualize SVM classification models. However, it cannot visualize nonlinear SVM models. Localized Radial Basis Function (LRBF) was proposed which shows comparable accuracy as the RBF kernel while the LRBF kernel is easier to interpret since it can be linearly decomposed. This paper presents a new tool named VRIFA, which integrates the nomogram and LRBF kernel to provide users with an interactive visualization of nonlinear SVM models, VRIFA visualizes the internal structure of nonlinear SVM models showing the effect of each feature, the magnitude of the effect, and the change at the prediction output. VRIFA also performs nomogram-based feature selection while training a model in order to remove noise or redundant features and improve the prediction accuracy. The area under the ROC curve (AUC) can be used to evaluate the prediction result when the data set is highly imbalanced. The tool can be used by biomedical researchers for computer-aided diagnosis and risk factor analysis for diseases.
The document-term frequency matrix is a term extracted from documents in which the group information exists in text mining. In this study, we generated the document-term frequency matrix for document classification according to research field. We applied the traditional term weighting function term frequency-inverse document frequency (TF-IDF) to the generated document-term frequency matrix. In addition, we applied term frequency-inverse gravity moment (TF-IGM). We also generated a document-keyword weighted matrix by extracting keywords to improve the document classification accuracy. Based on the keywords matrix extracted, we classify documents using a deep neural network. In order to find the optimal model in the deep neural network, the accuracy of document classification was verified by changing the number of hidden layers and hidden nodes. Consequently, the model with eight hidden layers showed the highest accuracy and all TF-IGM document classification accuracy (according to parameter changes) were higher than TF-IDF. In addition, the deep neural network was confirmed to have better accuracy than the support vector machine. Therefore, we propose a method to apply TF-IGM and a deep neural network in the document classification.
Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.
KIPS Transactions on Software and Data Engineering
/
v.7
no.4
/
pp.129-134
/
2018
Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.
KIPS Transactions on Software and Data Engineering
/
v.2
no.1
/
pp.55-64
/
2013
Due to the popularization of digital high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy for anyone to make a high-quality counterfeit money. However, the probability of detecting a counterfeit money to the general public is extremely low. In this paper, we propose a counterfeit money detection algorithm using a general purpose scanner. This algorithm determines counterfeit money based on the different features in the printing process. After the non-local mean value is used to analyze the noises from each money, we extract statistical features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and test the support vector machine classifier for identifying either original or counterfeit money. In the experiment, we use total 324 images of original money and counterfeit money. Also, we compare with noise features from previous researches using wiener filter and discrete wavelet transform. The accuracy of the algorithm for identifying counterfeit money was over 94%. Also, the accuracy for identifying the printing source was over 93%. The presented algorithm performs better than previous researches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.