• Title/Summary/Keyword: 서식처 연결성

Search Result 37, Processing Time 0.02 seconds

An Experimental Study on the Swimming Performance of Pale Chub(Zacco platypus) (피라미의 유영특성에 관한 실험적 연구)

  • Park, Seong-Yong;Kim, Seo-Jun;Lee, Seung-Hwi;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.423-432
    • /
    • 2008
  • The local migration or movement behavior of fishes in streams are related to feeding, spawning, growing, dispersing, and refuging. The pale chub (Zacco platypus) is a dominant species that migrates locally and inhabits in river and stream in Korea. However, dams, weirs, culverts and other regulatory structures are physical barriers that limit fish movement and fragment habits and populations. If main stream and off-channel habitats are connected with culverts, they would restrict the small fish as pale chub movement due to the high flow velocities and low depths. But in Korea, there is no experimental study to evaluate the swimming performance of species in Korea. Therefore, it is difficult to proposed that design guidelines for pass fishes through culverts. The purpose of this experimental study is to evaluate the swimming performance of pale chubs. A series of swimming performance test has been used in both of the fixed velocity and the incremental velocity methods in an experimental flume. As a result, the critical swimming speed for pale chub(body length 8.9 cm) was found to be about 0.7 m/s. Therefore, the flow velocity for culvert design in the low flow condition should not be exceed the its swimming ability, especially 0.7 m/s for pale chubs(body length 8.9 cm). And the minimum depth for culvert design in the low flow condition should not be lower than the fish body height add a dorsal fin height.

Genetic diversity and structure of Pulsatilla tongkangensis as inferred from ISSR markers (ISSR 표지자에 의한 동강할미꽃(Pulsatilla tongkangensis)의 유전다양성과 구조)

  • Kim, Zin-Suh;Jo, Dong-Gwang;Jeong, Ji-Hee;Kim, Young-Hee;Yoo, Ki-Oug;Cheon, Kyoung-Sic
    • Korean Journal of Plant Resources
    • /
    • v.23 no.4
    • /
    • pp.360-367
    • /
    • 2010
  • The genetic diversity and structure of P. tongkangensis in 5 populations from 3 regions was investigated using 56 markers derived from 6 ISSR primers. Genetic diversity at the species level (P=94.6, SI=0.377, h=0.240) was substantial considering the limited distribution and small size of populations. Genetic differentiation among regions (12%) and among populations (13%) in the region was not clearly evident, which suggested a moderate level of gene flow among adjacent populations. The Mantel test revealed a significant correlation between genetic differentiation (${\Phi}_{ST}$) and geographic distance among populations. This was supported by cluster analysis and principal coordinate analysis (PCoA). The significant difference in marker band frequency at many loci and their fixation in opposite directions in the smallest and most isolated population SC were considered due to genetic drift. Therefore, the genetic diversity of P. tongkangensis could be compromised if the distribution area or the size of the population was further reduced. In particular, small and isolated populations could be at great risk of extinction. Considering this, the unique habitats of P. tongkangensis should be protected and the reduction of population size should be closely monitored. Conservation efforts including the seeding and planting of seedlings should be done carefully based on their genetic and ecological traits. Our data support the argument that establishing an integrated management system for the efficient conservation of P. tongkangensis is critical.

Analysis of the Priority of Evaluation Criteria and Detailed Index for Selecting Street Trees (가로수 선정 평가기준과 세부지표의 중요도 분석)

  • Kim, Min Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.1
    • /
    • pp.42-53
    • /
    • 2021
  • Street trees improve the cityscape and air quality, reduce heat islands, and create wildlife habitats. Hence, they are essential parts of a city's green infrastructure. Therefore, several trees that are well adapted to the urban environment were planted. However, this caused the problem of simple trees being planted around the world. This study is to select more various street trees. To accomplish this, evaluation criteria and detailed indexes were created. The importance was indicated through the Analytic Hierarchy Process. For commercial roads, the priority of landscape characteristics is 0.2640, and among detailed indicators, the priority of shape is 0.1245. For work roads, the priority of landscape characteristics is 0.2496, and among detailed indicators, the priority of shape is 0.1177. For work roads, the priority of characteristics of civil service is 0.2250, and among detailed indicators, the priority of shape is 0.1177. For general roads, the priority of maintenance characteristics is 0.2479, and among detailed indicators, the priority of shape is 0.1062. For historical and cultural roads, the priority of regional characteristics is 0.3488, and among detailed indicators, the priority of regional characteristics is 0.1643. For ecological roads, the priority of ecosystem characteristics is 0.3488, and among detailed indicators, the priority of the diversity of species is 0.1643. For automotive-only roads, the priority of the ecosystem characteristics is 0.4639, and among detailed indicators, the priority of reducing emissions is 0.1643. This study will provide objective criteria for the selection of street trees.

Planting Plan of Ecological Corridor at Destroyed Mountain Area as a Result of Road Construction (도로개발에 의하여 훼손된 산림지역 생물이동통로 식재계획)

  • 이경재;한봉호
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.3
    • /
    • pp.321-337
    • /
    • 2002
  • This study was carried out to draw up the planting plan of bridge type ecological corridor for animals migration at Hakgogae(ridge) destroyed by road construction in Yongin, Gyeonggi-do, South Korea. It was conducted with two steps, survey and planting master plan. We surveyed the structure of topography, plant community, and animal habitat. We also selected the target species migrate ecological corridor and suggested a concept of each planting area, the planting species, and the planting density based on the analyzed data and finally drew up the planting plan. The structure of topography was a steep slope due to the mountain ridge destruction so the bridge type ecological corridor was could be applied in this study and we supposed that the animals migrate along the both edge of corridor. As the results of analyzed plant community structure in two sides, the dominant woody species, Quercus serrata and Q. variabilis were distributed on the bottom and the belly of a mountain, while Pinus densiflora community was distributed on the mountain ridge as edaphic climax. The similarity between Q. serrata -Q. mongolica -Q. variabilis community on the West of survey site and Q. serrata -Q. mongolica community on the East of survey site was high in 71.0 percentages. As the results of surveying birds and some mammalia, seven species and fifty-seven individuals of birds were founded in survey area, and two species and two individuals of rodents were founded. We selected birds and some mammals for the migration species that supposed to migrate ecological corridor in drawing up the planting plan. And then we divided the planting areas into bird corridor and habitat, and mammals corridor, also suggested the planting areas in detail as follows: community planting area of shrub at slope adjacent to the bridge exit as a buffer zone, screen planting area, community planting area of herb at steep slope connected with mountain areas, inducement planting area of the animals, community planting area for bird migration, community planting area for mammals migration, and community planting area for bird habitat. We selected the planting woody species which were the constancy ratio based on the analyzed data of plant community around mountain areas was high, and suggested the planting master plan each space.

A Study on Improving Survival of Bombina orientalis through Escape Facilities in Artificial Canals (무당개구리의 인공 수로 내 수로 탈출시설을 통한 생존성 향상에 대한 연구)

  • Jung-Hoon Bae;Young-Don Ju;Sul-Woong Shim;Yang-Seop Bae
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Amphibians are a taxonomic group that ecologically connects terrestrial ecosystems and aquatic ecosystems. They play a very important role in the food chain of the ecosystem. It is known that there are about 5,948 species distributed all over the world, but after the Industrial Revolution, due to industrialization and urbanization, there has been a decrease in species and populations. In particular, it is becoming a factor in exacerbating habitat fragmentation or fragmentation due to artificial canals. In orderto improve the survivalrate of wild animals in artificial canals, escape facilities are installed to reduce it. This study analyzed the slope, height of the escape facility, escape rate, and travel distance in the operating facility for Bombina orientalis, which mainly inhabits near forests. The slope of the escape facility showed a relatively similar escape success rate regardless of height at 50° and 60°, while at 70°, it showed a relatively high escape success rate at only 40cm in height. The success rate of escape from the waterway escape facility in operation was 14.71%, showing a very low utilization rate, and the recognition rate of the artificial canal escape facility was found to be very low as it moved along the side wall of the artificial canal. Therefore, in the case of a waterway escape facility for Bombina orientalis, it is possible to construct it at an angle of 60°, and if the side walls of the artificial canals are built within 60°, Bombina orientalis can move freely in both directions, overcoming the low utilization rate of existing waterway escape facilities. It is expected to minimize the impact of movement and death of artificial canals. In addition, if the spacing between escape facilities is narrowed from the installation standard of 30m and ramps are constructed in both directions upstream and downstream, the escape success rate of amphibians,reptiles, and small mammals otherthan lady frogs is expected to improve.

Diversity and Interaction of Pollination Network from Agricultural Ecosystems during Summer (경북과 강원지역 농업생태계에서 여름철 화분매개네트워크 다양성과 상호작용)

  • Son, Minwoong;Jung, Seongmin;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 2019
  • Pollination is an important ecosystem service involved in plant breeding and reproduction. This study analyzed the pollination network, which is the interaction between flowering plants and flower-visiting insects in the agricultural landscape. Flower-visiting insects from blossoms of flowering crops and surrounding plants were quantitatively surveyed during summer time. The pollinator species and abundance on each flowering plant were analyzed. A total of 2,381 interactions were indentified with 154 pollinators on 30 species of plants. Species richness of the pollinators was highest in Coleoptera (34%) followed by Hymenoptera (28%), Diptera (28%) and Lepidoptera (10%). Apis mellifera dominated (50%) followed by Calliphora vomitoria (5.3%) and Xylocopa appendiculata among pollinators, and remaining wild pollinators provided complex interaction. Among plants, Platycodon grandiflorum, Perilla frutescen and Fagopyrum esculentum harbored most pollinators and showed highest interaction frequencies. In the modular analysis, Apis mellifera was located as a hub-species which connect the interaction of others, implying most important role in the network. This results provide the basic information on the pollinator species associated with each crop and pollinator habitat in which plant provide the nectar, pollen and habitat resources for wild pollinators.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.