• 제목/요약/키워드: 서술어 온톨로지

검색결과 10건 처리시간 0.025초

서술어 온톨로지를 이용한 자연어 문장으로부터의 온톨로지 자동 생성 (Automatic Ontology Generation from Natural Language Sentences Using Predicate Ontology)

  • 민영근;이복주
    • 한국멀티미디어학회논문지
    • /
    • 제13권9호
    • /
    • pp.1263-1271
    • /
    • 2010
  • 시맨틱 웹 구현의 중요한 수단인 온톨로지는 검색, 추론, 지식표현 등 다양한 분야에서 사용되고 있다. 그러나 잘 구성된 온톨로지를 개발하는 것은 시간적, 물질적으로 많은 자원이 소모된다. 이러한 문제를 극복하기 위해 온톨로지를 자동으로 구축하는 시도가 있었다. 본 연구에서는 자연어 문장으로부터 직접 온톨로지를 자동적으로 생성하기 위해 형태소와 문장의 구조를 분석하고 자연어 문장의 서술어를 찾아 해당 온톨로지 서술어로 변환되게 하기 위하여 '서술어 온톨로지(predicate ontology)'를 두어서 분석된 자연어 문장의 서술어가 적절한 온톨로지 서술어로 변환될 수 있도록 한다. 인간 온톨로지 구축가와 제안한 방법을 비교한 실험 결과 정확도에서 나은 결과를 보였다.

온톨로지 자동 구축을 위한 서술어 온톨로지 (Predicate Ontology for Automatic Ontology Building)

  • 민영근;이복주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.28-31
    • /
    • 2008
  • 시맨틱 웹의 기반인 온톨로지는 검색, 추론, 지식표현 등 다양한 분야에서 사용하고 있다. 하지만 잘 구성된 온톨로지를 개발하는 것은 시간적, 물질적으로 많은 자원이 소모된다. 온톨로지를 자동으로 구축하면 이러한 소모를 줄일 수 있는 장점이 있다. 본 논문에서는 자연어처리를 온톨로지 자동 구축에 사용하기 위하여 자연어의 서술부분을 온톨로지의 서술어로 변환할 수 있는 서술어 온톨로지를 제안한다. 그리고 제안된 서술어 온톨로지를 사용하여 자연어 문장의 서술어 부분을 온톨로지의 predicate 로 변환하는 알고리즘을 소개한다. 또한 제안된 온톨로지를 온톨로지 언어인 OWL을 사용하여 구축하였다.

한국어 서술어와 지식베이스 프로퍼티 연결 (Linking Korean Predicates to Knowledge Base Properties)

  • 원유성;우종성;김지성;함영균;최기선
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1568-1574
    • /
    • 2015
  • 본 논문은 자연언어 문장을 지식베이스의 지식 골격에 맞추어 지식의 형태로 변환하기 위한 과정 중의 하나인 관계추출(Relation Extraction)을 목표로 한다. 특히, 문장 내에 있는 서술어(Predicate)에 집중하여 서술어와 관련성 높은 지식베이스 프로퍼티(Property or Relation)를 찾아내고, 이를 통해 두 개체(Entity)간의 의미를 파악하는 관계추출에 초점을 둔다. 이에 널리 활용되는 원격지도학습(Distant Supervision) 접근 방식에 따라, 지식베이스와 자연언어 텍스트로부터 원격 학습이 가능한 레이블(Labeled) 데이터를 자동으로 마련하여 지식베이스 프로퍼티에 대한 어휘화 작업을 수행한다. 즉, 두 개체 사이의 관계로 표현되는 서술어와, 온톨로지로 정의할 수 있는 프로퍼티와의 연결을 통해, 텍스트로부터 구조적 정보를 생성할 수 있는 기반을 마련하고 최종적으로 지식베이스 확장의 가능성을 열어준다.

맥락적 어휘 지식 그래프 추출 알고리즘의 설계 (Design of a Contextual Lexical Knowledge Graph Extraction Algorithm)

  • 남상하;최규현;함영균;최기선
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

맥락적 어휘 지식 그래프 추출 알고리즘의 설계 (Design of a Contextual Lexical Knowledge Graph Extraction Algorithm)

  • 남상하;최규현;함영균;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

HowNet 기반 은유 온톨로지 구축: 추상개념 '문화'를 중심으로 (Construct ion of Metaphor Ontology Using HowNet : Based on the Concept, 'Culture')

  • 안동근;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.205-212
    • /
    • 2006
  • 본 연구에서는 추상적 사고를 가능하게 해주는 개념은유 표현의 서술어를 분석하여, 추상개념의 근원영역을 찾는 알고리즘을 HowNet 지식 시스템을 이용하여 제안하고자 한다. 실제로 추상개념 '문화' 가 쓰인 242개의 은유 표현 용례 문장을 가지고 제안된 알고리즘으로 근원영역을 찾고. 이를 토대로. 목표영역 '문화' 의 근원영역이 추론기에 의하여 자동적으로 추론되는 HowNet 기반 은유 온톨로지의 구축 방안을 제시하고자 한다. 또한, 한국어 '문화' 와 영어표현 'Culture'의 근원영역 비교를 통하여 구축된 온톨로지를 영어 번역 및 작문에 어떻게 활용할 수 있는지 보이고자 한다.

  • PDF

사용자 질의 의미 해석을 위한 온톨로지 지식베이스 스키마 구축 (Ontology Knowledge Base Scheme for User Query Semantic Interpretation)

  • 도하나;이무훈;정훈;최의인
    • 디지털융복합연구
    • /
    • 제11권3호
    • /
    • pp.285-292
    • /
    • 2013
  • 최근의 검색 형태는 키워드 기반 검색에서 보다 더 정확한 결과를 제공하기 위한 시맨틱 검색 방법으로 변화하고 있다. 하지만 일반 사용자들은 여전히 기존의 키워드 기반 검색에 익숙하기 때문에 시맨틱 검색을 위한 형식화된 구조적 질의어를 구성할 수 없다. 따라서 본 논문에서는 이러한 사용자들의 키워드 해석을 위한 온톨로지 지식 베이스 스키마를 제안한다. 제안된 스키마는 서술 논리 추론을 위해 OWL-DL을 기반으로 설계되었으며 최소한의 관계 정의와 추론 규칙 언어인 SWRL(Semantic Web Rule Language)으로 추론함으로써 보다 풍부한 개체 관계의 표현을 제공한다. 마지막으로 논문에서 제안한 사용자 질의 의미 해석 기법의 검증을 위해 키워드 유사도 실험 결과를 설명한다.

온톨로지 시각화를 활용한 사용자 리뷰 분석 기반 영화 추천 시스템 (Movie Recommended System base on Analysis for the User Review utilizing Ontology Visualization)

  • 문성민;김기남;최경철;이경원
    • 디자인융복합연구
    • /
    • 제15권2호
    • /
    • pp.347-368
    • /
    • 2016
  • 최근 소비자 구전정보에 대한 연구들은 소비자가 제품 구매 과정에서 다른 소비자의 구전에 의한 정보를 활용한다는 연구 결과를 시사하고 있다. 본 연구는 제품에 대한 소비자의 의견을 파악하고 활용할 수 있도록 오피니언 마이닝과 시각화를 통해 도움을 줄 수 있는 방법을 제안하고자 한다. 이를 위해 최근 들어 관람할 영화를 선택할 때 인터넷 상의 영화리뷰를 참고 하는 상황이 증가함을 고려하여 "영화" 도메인의 온톨로지를 구축하고 오피니언 마이닝을 수행하여 시각화 한 후 그 결과에 대해 논하고자 한다. 온톨로지를 구축하는 과정에서 평가요소에 대한 속성 분류뿐만 아니라 평가요소에 대한 서술어 사전을 구성하였다는 점에서 기존의 연구와 차별성이 있으며 분석 결과를 통해 이러한 방법이 오피니언 마이닝에 유효함을 증명하고자 한다. 연구를 통해 도출한 결과는 크게 세 가지로 나누어 볼 수 있다. 첫째, 본 연구에서는 기존에 구축된 온톨로지를 활용하지 않고 키워드 추출과 토픽모델링을 활용하여 영화 도메인에 대한 온톨로지를 구축하는 방법에 대해 서술하였다. 둘째, 개별 영화에 대한 시각화 분석을 시행하여 영화에 대한 관객의 종합적인 의견을 한눈에 파악할 수 있도록 하였다. 셋째, 제품에 대한 평가 결과에 따라 유사한 평가를 받은 제품끼리 군집화 되는 것을 발견하였으며 본 연구의 분석에 사용된 130개의 영화는 크게 3개의 집단으로 군집화 됨을 보였다.

RDFS, OWL, OWL2의 문법특성을 고려한 신뢰향상적 LOD 연결성 평가 기법 (A Trustworthiness Improving Link Evaluation Technique for LOD considering the Syntactic Properties of RDFS, OWL, and OWL2)

  • 박재영;손용락
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제41권4호
    • /
    • pp.226-241
    • /
    • 2014
  • LOD(Linked Open Data)는 온톨로지에 기반하여 구조화되고 링크드 데이터 원칙에 의거하여 식별, 연결, 접근되는 RDF 트리플들로 구성된다. 이러한 LOD 데이터집합의 공개는 LOD 클라우드의 확장으로 이어지며 궁극적으로는 데이터 중심적인 웹으로 진화한다. 그러나, 존재적으로 동일한 개체들이 여러 LOD 데이터집합들에 걸쳐 서로 다르게 식별되는 경우 이들간의 동일성을 파악하여 신뢰적인 연결을 제공하는 것은 어려운 작업이다. 이를 위하여 본 논문은 신뢰향상적 연결성 평가(Trustworthiness Improving Link Evaluation: TILE) 기법을 제시한다. 보다 신뢰적인 연결성 평가 결과를 도출하기 위하여 TILE은 4단계로 진행한다. 우선, TILE은 LOD 데이터집합의 문법요소들이 가지는 추론적 특징을 고찰하여 잠재적으로만 존재하고 있던 사실들을 RDF 트리플들로 실체화하여 이를 데이터집합에 보강한다. 두 번째 단계에서 지정한 술어의 목적어 값을 비교하여 평가를 수행하며 세 번째 단계에서 RDF 트리플의 술어부가 지니고 있는 문법적 특성을 주어서술적/어휘정의적 관점에서 평가한 후 이를 두 번째 단계의 결과에 추가 반영한다. 이 과정에서 TILE이 고찰하는 문법적 요소들은 LOD 클라우드를 구축하기 위하여 W3C가 제시한 언어인 RDFS, OWL, OWL2 모두를 망라한다. 마지막으로, LOD 데이터집합 공개자로 하여금 연결성 평가결과를 검토하여 재평가 실시 혹은 연결확정을 결정하도록 함으로써 공개하는 데이터의 연결성이 가져야 하는 신뢰성에 공개주체의 책임이 반영되도록 한다.

지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발 (Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion)

  • 최현승;김민태;김우주;신동욱;이용훈
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.111-136
    • /
    • 2018
  • 지식베이스를 구축하는 작업은 도메인 전문가가 온톨로지 스키마를 이해한 뒤, 직접 지식을 정제하는 수작업이 요구되는 만큼 비용이 많이 드는 활동이다. 이에, 도메인 전문가 없이 다양한 웹 환경으로부터 질의에 대한 답변 정보를 추출하기 위한 자동화된 시스템의 연구개발의 필요성이 제기되고 있다. 기존의 정보 추출 관련 연구들은 웹에 존재하는 다양한 형태의 문서 중 학습데이터와 상이한 형태의 문서에서는 정보를 효과적으로 추출하기 어렵다는 한계점이 존재한다. 또한, 기계 독해와 관련된 연구들은 문서에 정답이 있는 경우를 가정하고 질의에 대한 답변정보를 추출하는 경우로서, 문서의 정답포함 여부를 보장할 수 없는 실제 웹의 비정형 문서로부터의 정보추출에서는 낮은 성능을 보인다는 한계점이 존재한다. 본 연구에서는 지식베이스 확장을 위하여 웹에 존재하는 멀티소스 비정형 문서로부터 질의에 대한 정보를 추출하기 위한 시스템의 개발 방법론을 제안하고자 한다. 본 연구에서 제안한 방법론은 "주어(Subject)-서술어(Predicate)"로 구분된 질의에 대하여 위키피디아, 네이버 백과사전, 네이버 뉴스 3개 웹 소스로부터 수집된 비정형 문서로부터 관련 정보를 추출하며, 제안된 방법론을 적용한 시스템의 성능평가를 위하여, Wu and Weld(2007)의 모델을 베이스라인 모델로 선정하여 성능을 비교분석 하였다. 연구결과 제안된 모델이 베이스라인 모델에 비해, 위키피디아, 네이버 백과사전, 네이버 뉴스 등 다양한 형태의 문서에서 정보를 효과적으로 추출하는 강건한 모델임을 입증하였다. 본 연구의 결과는 현업 지식베이스 관리자에게 지식베이스 확장을 위한 웹에서 질의에 대한 답변정보를 추출하기 위한 시스템 개발의 지침서로서 실무적인 시사점을 제공함과 동시에, 추후 다양한 형태의 질의응답 시스템 및 정보추출 연구로의 확장에 기여할 수 있을 것으로 기대한다.