• Title/Summary/Keyword: 서비스 에지

Search Result 73, Processing Time 0.016 seconds

Fault Detection and Reuse of Self-Adaptive Module (자가 적응 모듈의 오류 탐지와 재사용)

  • Lee, Joon-Hoon;Lee, Hee-Won;Park, Jeong-Min;Jung, Jin-Su;Lee, Eun-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.247-252
    • /
    • 2007
  • 오늘날 컴퓨팅 환경은 점차 복잡해지고 있으며, 복잡한 환경을 관리하는 이 점차 중요해 지고 있다. 이러한 관리를 위해 어플리케이션의 내부 구조를 드러내지 않은 상태에서 환경에 적응하는 자가치유에 관한 연구가 중요한 이슈가 되고 있다. 우리의 이전 연구에서는 자가 적응 모듈의 성능 향상을 위해 스위치를 사용하여 컴포넌트의 동작 유무를 결정하였다. 그러나 바이러스와 같은 외부 상황에 의해 자가 적응 모듈이 정상적으로 동작하지 않을 수 있으며 다수의 파일을 전송할 때 스위치가 꺼진 컴포넌트들은 메모리와 같은 리소스를 낭비한다. 본 연구에서는 이전 연구인 성능 개선 자가 적응 모듈에서 발생할 수 있는 문제점을 해결하기 위한 방법을 제안한다. 1) 컴포넌트의 동작 여부를 결정하는 스위치를 확인하여 비정상 상태인 컴포넌트를 찾아 치유를 하고, 2) 현재 단계에서 사용하지 않는 컴포넌트를 다른 작업에서 재사용한다. 이러한 제안 방법론을 통해 파일 전송이 않은 상황에서도 전체 컴포넌트의 수를 줄일 수 있으며 자가 적응 제어 모듈을 안정적으로 작동할 수 있도록 한다. 본 논문에서는 명가를 위하여 비디오 회의 시스템 내의 파일 전송 모듈에 제안 방법론을 적용하여 이전 연구의 모듈과 제안 방법론을 적용한 모듈이 미리 정한 상황들에서 정상적으로 적응할 수 있는지를 비교한다. 또한 파일 전송이 많은 상황에서 제안 방법론을 적용하였을 때 이전 연구 방법론과의 컴포넌트 수를 비교한다. 이를 통해 이전 연구의 자가 적응 모듈의 비정상 상태를 찾아낼 수 있었고, 둘 이상의 파일 전송이 이루어 질 때 컴포넌트의 재사용을 통해 리소스의 사용을 줄일 수 있었다.위해 잡음과 그림자 영역을 제거한다. 잡음과 그림자 영역을 제거하면 구멍이 발생하거나 실루엣이 손상되는 문제가 발생한다. 손상된 정보는 근접한 픽셀이 유사하지 않을 때 낮은 비용을 할당하는 에너지 함수의 스무드(smooth) 항에 의해 에지 정보를 기반으로 채워진다. 결론적으로 제안된 방법은 스무드 항과 대략적으로 설정된 데이터 항으로 구성된 에너지 함수를 그래프 컷으로 전역적으로 최소화함으로써 더욱 정확하게 목적이 되는 영역을 추출할 수 있다.능적으로 우수한 기호성, 즉석에서 먹을 수 있는 간편성, 장기저장에 의한 식품 산패, 오염 및 변패 미생물의 생육 등이 발생하지 않는 우수한 생선가공, 저장방법, 저가 생선류의 부가가치 상승 등 여러 유익한 결과를 얻을 수 있는 효과적인 가공방법을 증명하였다.의 평균섭취량에도 미치지 못하는 매우 저조한 영양상태를 보여 경제력, 육체적 활동 및 건강상태 등이 매우 열악한 이들 집단에 대한 질 좋은 영양서비스의 제공이 국가적 차원에서 시급히 재고되어야 할 것이다. 연구대상자 특히 배달급식 대상자의 경우 모집의 어려움으로 인해 적은 수의 연구대상자의 결과를 보고한 것은 본 연구의 제한점이라 할 수 있다 따라서 본 연구결과를 바탕으로 좀 더 많은 대상자를 대상으로 한 조사 연구가 계속 이루어져 가정배달급식 프로그램의 개선을 위한 유용한 자료로 축적되어야 할 것이다.상범주로 회복함을 알수 있었고 실험결과 항암제 투여후 3 일째 피판 형성한 군에서 피판치유가 늦어진 것으로 관찰되어 인체에서 항암 투여후 수술시기는 인체면역계가 회복하는 시기를 3주이상 경과후 적어도 4주째 수술시기를 정하는 것이 유리하리라 생각되

  • PDF

Important Facility Guard System Using Edge Computing for LiDAR (LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템)

  • Jo, Eun-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.345-352
    • /
    • 2022
  • Recent LiDAR(Light Detection And Ranging) sensor is used for scanning object around in real-time. This sensor can detect movement of the object and how it has changed. As the production cost of the sensors has been decreased, LiDAR begins to be used for various industries such as facility guard, smart city and self-driving car. However, LiDAR has a large input data size due to its real-time scanning process. So another way for processing a large amount of data are needed in LiDAR system because it can cause a bottleneck. This paper proposes edge computing to compress massive point cloud for processing quickly. Since laser's reflection range of LiDAR sensor is limited, multiple LiDAR should be used to scan a large area. In this reason multiple LiDAR sensor's data should be processed at once to detect or recognize object in real-time. Edge computer compress point cloud efficiently to accelerate data processing and decompress every data in the main cloud in real-time. In this way user can control LiDAR sensor in the main system without any bottleneck. The system we suggest solves the bottleneck which was problem on the cloud based method by applying edge computing service.

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.