The Transactions of the Korea Information Processing Society
/
v.13
no.2
/
pp.60-75
/
2024
The demand of users, who want to focus on the core functionality of their applications without having to manage complex virtual environments in the cloud environment, has created a new computing model called serverless computing. Within the serverless paradigm, resource provisioning and server administration tasks are delegated to cloud services, facilitating application development exclusively focused on program logic. Serverless computing has upgraded the utilization of cloud computing by reducing the burden on cloud service users, and it is expected to become the basic model of cloud computing in the future. A serverless platform is responsible for managing the cloud virtual environment on behalf of users, and it is also responsible for executing serverless functions that compose applications in the cloud environment. Considering the characteristics of serverless computing in which users are billed in proportion to the resources used, the efficiency of the serverless platform is a very important factor for both users and service providers. This paper aims to identify various factors that affect the performance of serverless computing and analyze the latest research trends related to it. Drawing upon the analysis, the future directions for serverless computing that address key challenges and opportunities in serverless computing are proposed.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.10
/
pp.323-332
/
2022
As various services using AI technology are being developed, much attention is being paid to AI service production. Recently, AI technology is acknowledged as one of ICT services, a lot of research is being conducted for general-purpose AI service production. In this paper, I describe the research results in terms of systems for AI service production, focusing on the distribution and production of machine learning models, which are the final steps of general machine learning development procedures. Three different Ubuntu systems were built, and experiments were conducted on the system, using data from 2017 validation COCO dataset in combination of different AI models (RFCN, SSD-Mobilenet) and different communication methods (gRPC, REST) to request and perform AI services through Tensorflow serving. Through various experiments, it was found that the type of AI model has a greater influence on AI service inference time than AI machine communication method, and in the case of object detection AI service, the number and complexity of objects in the image are more affected than the file size of the image to be detected. In addition, it was confirmed that if the AI service is performed remotely rather than locally, even if it is a machine with good performance, it takes more time to infer the AI service than if it is performed locally. Through the results of this study, it is expected that system design suitable for service goals, AI model development, and efficient AI service production will be possible.
This paper presents a watermarking scheme based on the perspective distance for the secure mash-up service. The proposed scheme embeds the watermark of the location information of satellite image and the user information using edge color histogram, which is dissimilar to general digital image. Therefore, this scheme can trace the illegal distributor and can protect private information of user through the watermarking scheme that is adaptive to satellite image. Experimental results verified that our scheme has the invisibility and also the robustness against geometric attacks of rotation and translation.
Recently, to support location-based services, there have been many researches which consider the spatial network. For this, there are many experimental data for data processing on the road network. However, the data to process the trajectory of moving objects are not suitable. Therefore, we propose index structure to process the trajectory data on the road network and the trajectory data generation algorithm. In addition, to prove efficiency of our index structure and algorithm, we show that edge-based trajectory data are generated through the proposed algorithm using the map data of San Francisco Bay.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.11
/
pp.2474-2479
/
2011
As society has developed rapidly toward a highly advanced digital information age, a multimedia communication service for acquisition, transmission and storage of image data as well as voice has being commercialized. However, image data is always corrupted by various noises during image processing, so researches for removing noises have been continued until now. In this paper, in order to remove impulse noise we proposed modified adaptive switching median filter that consists of two stages: noise detection and noise removal. Proposed algorithm only processes noise pixels and these noise pixels are replaced by filter output, so proposed algorithm performs well not only removes noise but also preserves edge information. Also we compare existing methods using PSNR(peak signal to noise ratio) as the standard of judgement of improvement effect and choose conventional algorithms to compare with our proposed method.
Recently, safety issues in companies and public institutions are no longer a task that can be postponed, and when a major safety accident occurs, not only direct financial loss, but also indirect loss of social trust in the company and public institution is greatly increased. In particular, in the case of a fatal accident, the damage is even more serious. Accordingly, as companies and public institutions expand their investments in industrial safety education and prevention, open AI learning model creation technology that enables safety management services without being affected by user behavior in industrial sites where high-risk situations exist, edge terminals System development using inter-AI collaboration technology, cloud-edge terminal linkage technology, multi-modal risk situation determination technology, and AI model learning support technology is underway. In particular, with the development and spread of artificial intelligence technology, research to apply the technology to safety issues is becoming active. Therefore, in this paper, an open cloud platform design method that can support AI model learning for high-risk site safety management is presented.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1996.06a
/
pp.187-190
/
1996
본 논문은 고속의 프랙탈 영상압축 기법으로 알려져 있는 Bath 프랙탈 영상 압축 기법의 성능을 여러 가지 측면에서 분석한다. Bath 프랙탈 영상 압축 기법은 영상의 빠른 복호화가 가능하므로 미래의 다양한 형태로 요구되는 정보서비스, VOD(Video On Demand), CD-ROM 등과 같이 저장되어 있는 영상 정보의 빠른 복원이 요구되는 곳에 적합한 부호화 기술이므로 그 성능에 대한 분석이 중요하다. 본 논문에서는 Bath 프랙탈 압축 기법의 양자화 방법에 따른 성능 분석, 프랙탈 계수 값의 분포에 따른 성능 평가, 사용된 어핀 맵핑식에 따른 성능 비교, 영상내의 에지 빈도수에 따른 성능 변화, 쿼드트리 구조의 작은 블록들에 대한 BFT의 성능 평가 등을 고찰한다.
Proceedings of the Korean Society of Computer Information Conference
/
2010.07a
/
pp.117-119
/
2010
본 논문에서는 옴니버스 형태의 동영상을 각 프로그램 별로 자동 분할하는 방법에 대해 제안하고자 한다. 국내 TV 프로그램의 경우 대부분의 개그 프로그램에서는 코너 별로 상단 또는 하단의 일정 위치에 코너명을 캡션으로 삽입하여 옴니버스 형태의 영상을 서비스한다. 이러한 코너명을 태깅아이콘으로 하여 지속되는 구간을 검출하여 시작시점과 종료시점을 검출함으로써 동영상을 의미적으로 분할 할 수 있다. 하지만 태깅아이콘의 경우 매우 높은 투명도를 갖는 경우가 많으므로 본 연구에서는 에지와 시간적인 지속성을 이용하여 에피소드를 분할하는 방법을 제안하고, 옴니버스 형태의 다양한 개그 프로그램에 대해 실험하여 제안한 방법의 우수성을 보인다.
가상현실이나 인터넷 웹지도 서비스와 같이 3차원의 실세계를 시스템 상에 그대로 재현(reconstruction)하기 위해서는 정교하고 세밀한 3차원 도시모델이 필수적이다. 이러한 3차원 도시모델의 자동생성은 원격탐사 및 사진측량 분야에서 많은 연구가 수행되고 있다. 이러한 연구들은 다양한 센서 데이터와 기 구축되어 있는 GIS자료를 이용하여 건물, 도로, 지형 등의 도시모델을 자동으로 생성하고자 한다. 그러나 대부분의 연구에서 추출한 각 기본요소(primitives)-평면패치(planar patches), 에지(edges), 모서리(corners)에 대한 국부적인 정제(refinement)는 수행하였으나, 생성한 건물 모델에 대한 광역적인 조정을 통한 정규화에 대한 연구는 미비한 상태이다. 본 연구에서는 다양한 데이터로부터 생성된 B-rep (boundary representation) 형태의 건물 모델에 대하여 기하학적인 제약요소(constraints)를 이용한 정규화(regularization) 방법론을 제시하고자 한다. 제안하는 방법은 건물의 Domain Knowledge에 기반하여 도출한 건물을 구성하는 기본요소(primitives)간의 인접성, 직교성, 평행성, 교차성 등의 다양한 제약조건을 이용하여 광역적으로 조정한다. 시뮬레이션 데이터에 적용한 결과의 분석을 통해 제안된 정규화 방법을 통해 오차가 포함된 건물모델이 보다 정형화된 형태로 조정되었음을 확인하였다.
본 논문은 스마트 해상 물류에 필요한 최신 Edge Computing과 인공지능을 구성한 자율 접안 시뮬레이터의 개발이다. 먼저, 스마트 해상 물류에서 선박의 접안에 관한 요구 사항을 분석하고, 다음으로 그 분석된 결과를 사용하여 서비스, 시스템, 핵심부품을 설계하고 제작한다. 결국, 본 논문은 스마트 해상물류에 필요한 자율접안 시뮬레이터를 개발한다. 향후, 본 논문은 실제 스마트 해상 물류에 필요한 Edge Computing과 인공지능의 기계 학습 알고리즘을 개발할 계획이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.