• Title/Summary/Keyword: 서비스효율

Search Result 9,054, Processing Time 0.039 seconds

A Study on the Usage Behavior of Universities Library Website Before and After COVID-19: Focusing on the Library of C University (COVID-19 전후 대학도서관 홈페이지 이용행태에 관한 연구: C대학교 도서관을 중심으로)

  • Lee, Sun Woo;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.3
    • /
    • pp.141-174
    • /
    • 2021
  • In this study, by examining the actual usage data of the university library website before and after COVID-19 outbreak, the usage behavior of users was analyzed, and the data before and after the virus outbreak was compared, so that university libraries can provide more efficient information services in a pandemic situation. We would like to suggest ways to improve it. In this study, the user traffic made on the website of University C was 'using Google Analytics', from January 2018 to December 2018 before the oneself of the COVID-19 virus and from January 2020 to 2020 after the outbreak of the virus. A comparative analysis was conducted until December. Web traffic variables were analyzed by classifying them into three characteristics: 'User information', 'Path', and 'Site behavior' based on metrics such as session, user, number of pageviews, number of pages per session time, and bounce rate. To summarize the study results, first, when compared with data from January 1 to January 20 before the oneself of COVID-19, users, new visitors, and sessions all increased compared to the previous year, and the number of sessions per user, number of pageviews, and number of pages per session, which showed an upward trend before the virus outbreak in 2020, increased significantly. Second, as social distancing was upgraded to the second stage, there was also a change in the use of university library websites. In 2020 and 2018, when the number os students was the lowest, the number of page views increased by 100,000 more in 2020 compared to 2018, and the number of pages per session also recorded10.46, which was about 2 more pages compared to 2018. The bounce rate also recorded 14.38 in 2018 and 2019, but decreased by 1 percentage point to 13.05 in 2020, which led to more active use of the website at a time when social distancing was raised.

Analysis of CO2 Emission Pattern by Use in Residential Sector (가정 부문 이산화탄소 배출량 추이 분석)

  • Yoon, So Won;Lim, Eun Hyouk;Lee, Gyoung Mi;Hong, You Deok
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The objective of this study is the estimate of $CO_2$ emissions by the energy consumption of functional technology introduced by classifying energy use in households according to functions as well as energy resources. This study also intends to provide the practical basis data in order to establish specific alternatives for GHG mitigation in residential sector with examining the cause analysis affecting $CO_2$ emission increases from 1995 to 2007. The results of this study show a 6.6% increase in the total $CO_2$ from 60,636 thousand tons in 1995 to 64,611 thousand tons in 2007 by using energy in residential sector. Heating is the greatest $CO_2$ emission sector by use, followed electric appliances, cooking, lighting and cooling. Heating sector shows 56.6% reductions from 71.5% in 1995 and as do cooling and electric home appliances, with a 2.4% increase from 0.6% and a 21.8% increase from 14.2% respectively. To analyze factors resulted in $CO_2$ emissions in residential sector, the relevant indicator change rate from 2005 to 2007 was examined. The results find that population, the number of household, housing areas, family patterns, and family income resulted in the $CO_2$ emissions increase in residential sector from 1995 to 2007. On the other hand, carbon intensity and energy intensity contribute to $CO_2$ reduction in residential sector with -2% and -38.7% respectively because of the energy conversion and the improvement of energy efficiency in electronic appliances. This study can be used as a reference when taken account of the reality and considered the introduction of highly effective measures to increase the possibility of mitigation potential in residential sector hereafter.

Business Incubator Manager's Competency Characteristics Affect Organizational Commitment and Work Performance : Focused on the Manager's Self-Efficacy (창업보육센터 매니저의 역량 특성이 조직몰입과 업무성과에 미치는 영향 : 매니저의 자기효능감을 중심으로)

  • Park, Sang-Ho;Kang, Shin-Cheol
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.1
    • /
    • pp.71-85
    • /
    • 2021
  • Representative domestic start-up support organizations include the Business Incubator(BI), Korea Institute of Startup & Entrepreneurship Development(KISED), Techno Park(TP), and Center of Creative Economy Innovation(CCEI), and there are about 260 Business incubator nationwide. The Business incubator is operated by universities, research institutes, and private foundations or associations. The organization consists of the center director and the incubating professionals (hereinafter referred to as "manager"), etc., and performs tasks such as center operation management and incubation support services for tenant companies. Until now, research on the operation of Business Incubator has been mainly focused on the performance of tenant companies. Studies on whether the manager's competency characteristics directly or indirectly affect the performance of the tenant companies through psychological mediators such as self-efficacy and organizational commitment were very scarce. The purpose of this study is to explore various factors influencing organizational commitment and job performance by the competence characteristics of Business incubator managers, and to explain the causal relationship among those factors. In particular, the difference in perception was investigated by a manager's survey that influences organizational commitment and work performance at the Business incubator. Through this, we intend to present practical implications for the role of managers in the operation of Business incubators. This study is an exploratory study, and the subject of the study was a survey of about 600 managers working at Business incubator nationwide, of which 116 responses were analyzed. Data analysis included descriptive statistics, exploratory factor analysis, and reliability. Structural equation model analysis was performed for hypothesis tests. As a result of the analysis, it was found that the cognitive characteristics of the Business incubator manager, communication, and situational response as the behavioral characteristics had a positive effect on the manager's self-efficacy, and the behavioral characteristics had a greater effect on the self-efficacy. It was also found that the manager's cognitive and behavioral characteristics, and self-efficacy had a positive effect on organizational commitment and work performance. In particular, a manager's self-efficacy has a positive effect on organizational commitment and work performance. This result showed that the manager's competency characteristics increase the manager's self-efficacy as a mediating factor rather than directly affecting organizational commitment and work performance. This study explains that the manager's competency characteristics are transferred to organizational commitment and work performance. The results of the study are expected to reflect the job standard of the National Competency Standards (NCS) and basic vocational competency to the job competency of managers, and it also provides a guideline for the effective business incubator operation in terms of human resource management. In practice, it is expected that the results of the study can reflect the vocational basic skills of the Business Incubator manager's job competency in the National Competency Standards(NCS) section, and suggest directions for the operation of the Business Incubator and the manager's education and training.

Evaluating Global Container Ports' Performance Considering the Port Calls' Attractiveness (기항 매력도를 고려한 세계 컨테이너 항만의 성과 평가)

  • Park, Byungin
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.3
    • /
    • pp.105-131
    • /
    • 2022
  • Even after the improvement in 2019, UNCTAD's Liner Shipping Connectivity Index (LSCI), which evaluates the performance of the global container port market, has limited use. In particular, since the liner shipping connectivity index evaluates the performance based only on the distance of the relationship, the performance index combining the port attractiveness of calling would be more efficient. This study used the modified Huff model, the hub-authority algorithm and the eigenvector centrality of social network analysis, and correlation analysis for 2007, 2017, and 2019 data of Ocean-Commerce, Japan. The findings are as follows: Firstly, the port attractiveness of calling and the overall performance of the port did not always match. However, according to the analysis of the attractiveness of a port calling, Busan remained within the top 10. Still, the attractiveness among other Korean ports improved slowly from the low level during the study period. Secondly, Global container ports are generally specialized for long-term specialized inbound and outbound ports by the route and grow while maintaining professionalism throughout the entire period. The Korean ports continue to change roles from analysis period to period. Lastly, the volume of cargo by period and the extended port connectivity index (EPCI) presented in this study showed a correlation from 0.77 to 0.85. Even though the Atlantic data is excluded from the analysis and the ship's operable capacity is used instead of the port throughput volume, it shows a high correlation. The study result would help evaluate and analyze global ports. According to the study, Korean ports need a long-term strategy to improve performance while maintaining professionalism. In order to maintain and develop the port's desirable role, it is necessary to utilize cooperation and partnerships with the complimentary port and attract shipping companies' services calling to the complementary port. Although this study carried out a complex analysis using a lot of data and methodologies for an extended period, it is necessary to conduct a study covering ports around the world, a long-term panel analysis, and a scientific parameter estimation study of the attractiveness analysis.

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.191-203
    • /
    • 2022
  • In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

Research on hybrid music recommendation system using metadata of music tracks and playlists (음악과 플레이리스트의 메타데이터를 활용한 하이브리드 음악 추천 시스템에 관한 연구)

  • Hyun Tae Lee;Gyoo Gun Lim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.145-165
    • /
    • 2023
  • Recommendation system plays a significant role on relieving difficulties of selecting information among rapidly increasing amount of information caused by the development of the Internet and on efficiently displaying information that fits individual personal interest. In particular, without the help of recommendation system, E-commerce and OTT companies cannot overcome the long-tail phenomenon, a phenomenon in which only popular products are consumed, as the number of products and contents are rapidly increasing. Therefore, the research on recommendation systems is being actively conducted to overcome the phenomenon and to provide information or contents that are aligned with users' individual interests, in order to induce customers to consume various products or contents. Usually, collaborative filtering which utilizes users' historical behavioral data shows better performance than contents-based filtering which utilizes users' preferred contents. However, collaborative filtering can suffer from cold-start problem which occurs when there is lack of users' historical behavioral data. In this paper, hybrid music recommendation system, which can solve cold-start problem, is proposed based on the playlist data of Melon music streaming service that is given by Kakao Arena for music playlist continuation competition. The goal of this research is to use music tracks, that are included in the playlists, and metadata of music tracks and playlists in order to predict other music tracks when the half or whole of the tracks are masked. Therefore, two different recommendation procedures were conducted depending on the two different situations. When music tracks are included in the playlist, LightFM is used in order to utilize the music track list of the playlists and metadata of each music tracks. Then, the result of Item2Vec model, which uses vector embeddings of music tracks, tags and titles for recommendation, is combined with the result of LightFM model to create final recommendation list. When there are no music tracks available in the playlists but only playlists' tags and titles are available, recommendation was made by finding similar playlists based on playlists vectors which was made by the aggregation of FastText pre-trained embedding vectors of tags and titles of each playlists. As a result, not only cold-start problem can be resolved, but also achieved better performance than ALS, BPR and Item2Vec by using the metadata of both music tracks and playlists. In addition, it was found that the LightFM model, which uses only artist information as an item feature, shows the best performance compared to other LightFM models which use other item features of music tracks.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

A Study on the Material Characteristics and Weathering Aspects of Sculpture Stone Around the World Cultural Heritage Joseon Dynasty Royal Tombs - Focused on the East Nine Royal Tombs - (세계문화유산 조선왕릉 석조문화재의 재질특성 및 풍화양상 연구 - 구리 동구릉을 중심으로 -)

  • CHO Hajin ;CHAE Seunga ;SONG Jinuk;LEE Myeongseong ;LEE Taejong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.180-193
    • /
    • 2022
  • The East Nine Royal Tombs is a representative place in the Royal Tombs of Joseon (a World Heritage Site). It consists of 1,289 stone artifacts including 979 related stone structures, 310 stone statues, and objects. Most of the stone structures in the East Nine Royal Tombs are composed of biotite granite, but some tombs are composed of light red granite. As a result of magnetic susceptibility measurement, the average data from Geonwolleung to Mongneung, excluding Hyeolleung, were similar, so it is estimated that stones were obtained from the same quarry. In the case of Sungneung, Sureung, and Gyeongneung, the range of susceptibility measurement is widely distributed. It assumed that the newly produced stones were mixed in the moving and construction process. Also, stones might be gathered from different quarries. As a result of a conservation status investigation, both the mound member and the ridge stone had the highest damage rate due to peeling and granular decomposition according to surface weathering. In the case of surface discoloration, yellowing and soils were found in the burial mound members. Yellowing, blackening, and soil were identified in the ridge stone structures. Bio-degradation is the major factor of deterioration of the East Nine Royal Tombs and the conservation status of the tombs were detected as grades 4 to 5. It seems that it is easy for the environment of the royal tombs to form soil for the microorganisms and fine conditions for continuous moisture. In the case of structures, they are in relatively good condition. As a result of a comprehensive damage rating for each tomb, the overall condition is good, but the Geonwolleung Royal Tomb and Hyeolleung Tomb, which were created in the early period, had relatively high weathering ratings. Stone objects in East Nine Royal Tombs have lost many pieces and gateway members due to surface deterioration. Also, secondary damage is ongoing. Each damage factor of the stone artifacts of the East Nine Royal Tombs combines to cause various and continuous damages. Therefore, it is necessary to establish regular conservation status data of the stone artifacts for efficient management after processing as well as conservation treatment of the royal tombs, and specific management manuals and systems. This study investigated the conservation status of stone structures in the East Nine Royal Tombs, a World Heritage Site, and systematically classified them to provide priority and necessity for conservation processing. We look forward to establishing a plan for the conservation and management of the East Nine Royal Tombs with this database in the future.

Factors Influencing Korean International Adoptee's Search for Their Birthparents (국외입양인의 뿌리찾기에 영향을 미치는 요인)

  • Kwon, Ji-sung;Ahn, Jae-jin
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.4
    • /
    • pp.369-393
    • /
    • 2010
  • This study examines the factors influencing Korean international adoptee's search for their birthparents. Considering that the search for birthparents is general needs for adoptees, Korean government should support their searching activities and, first of all, understand their characteristics. The research model was constructed based on the results of previous studies, and the data set of conducted by ministry of health and welfare was reanalyzed for this study. The subjects of the survey were Korean-born adoptees (who are more than 16 years old) in North America, Europe, and Australia. The research questionnaire was translated to English and French, and the survey was conducted on line. A total of 290 questionnaires were included in the analysis. Since survey was conducted on line, the missing rate of the data was relatively high. So, multiply imputed five data sets were used for analysis. Among the variables included in research model, the age group of adoptees, experience of identity crisis in their life, the first time when they became actively interested in Korean roots, the age at the time of adoption, and the attitudes of adoptive parents toward their search were significantly related to their search for birthparents. Adoptees in the age group of 30~34 had more actively participated in search compared to their reference group (which is the age group of more than 35 years old). The earlier they became actively interested in Korean roots, they tended to be more active in searching activities. Also, the experience of identity crisis in life and the age at the time of adoption were positively related to their search. Although most of adoptive parents have supported their search, the adoptees who reported that they didn't know their adoptive parents' attitude toward search, or their parents deceased had more actively participated in search for their birthparents. Some implications for adoption policy and practice were discussed based on the results of the study.