• Title/Summary/Keyword: 서리두께

Search Result 12, Processing Time 0.014 seconds

Part2 : Quantitative Analyses of Accumulated Ice Shapes with Various Icing Conditions (Part2 : 착빙 조건 변화에 따른 결빙 형상의 정량적 분석)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1105-1114
    • /
    • 2010
  • Ice shapes accumulated on the aircraft surfaces are categorized into rime and glaze ice, which are highly dependent on various parameters such as ambient temperature, liquid water contents (LWC), mean volumetric droplet diameter and freestream velocity. In this study, quantitative analyses on the ice accretion have been attempted in a systematical manner and the key findings are as follows. First, the increase of freestream velocity can cause tremendous change in the ice accumulation such as the growth of ice accretion area, ice heading direction and maximum thickness of ice horn. Second, LWC is found to be linearly proportional to the ice accretion area. Third, the effects of ambient temperature on incoming water mass seem to be relatively small in comparison with LWC and freestream velocity. Finally, it was shown that MVD has only a little influence on ice shapes. However, it may increase the ice accretion area by increasing the droplet impacting range.

Prediction of Glaze Ice Accretion on 2D Airfoil (2차원 에어포일의 유리얼음 형상 예측 코드 개발)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.747-757
    • /
    • 2010
  • The ice accreted on the airfoil is one of the critical drivers that causes the degradation of aerodynamic performance as well as aircraft accidents. Hence, an efficient numerical code to predict the accreted ice shape is crucial for the successful design of de-icing and anti-icing devices. To this end, a numerical code has been developed for the prediction of glaze ice accretion shape on 2D airfoil. Constant Source-Doublet method is used for the purpose of computational efficiency and heat transfer in the icing process is accounted for by Messinger model. The computational results are thoroughly compared against available experiments and other computation codes such as LEWICE and TRAJICE. The direction and thickness of ice horn are shown to yield similar results compared to the experiments and other codes. In addition, the effects of various parameters - temperature, free-stream velocity, liquid water contents, and droplet diameter - on the ice shape are systematically analyzed through parametric studies.