• 제목/요약/키워드: 샵봇

검색결과 1건 처리시간 0.013초

강화 학습에서의 탐색과 이용의 균형을 통한 범용적 온라인 Q-학습이 적용된 에이전트의 구현 (Implementation of the Agent using Universal On-line Q-learning by Balancing Exploration and Exploitation in Reinforcement Learning)

  • 박찬건;양성봉
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.672-680
    • /
    • 2003
  • shopbot이란 온라인상의 판매자로부터 상품에 대한 가격과 품질에 관한 정보를 자동적으로 수집함으로써 소비자의 만족을 최대화하는 소프트웨어 에이전트이다 이러한 shopbot에 대응해서 인터넷상의 판매자들은 그들에게 최대의 이익을 가져다 줄 수 있는 에이전트인 pricebot을 필요로 할 것이다. 본 논문에서는 pricebot의 가격결정 알고리즘으로 비 모델 강화 학습(model-free reinforcement learning) 방법중의 하나인 Q-학습(Q-learning)을 사용한다. Q-학습된 에이전트는 근시안적인 최적(myopically optimal 또는 myoptimal) 가격 결정 전략을 사용하는 에이전트에 비해 이익을 증가시키고 주기적 가격 전쟁(cyclic price war)을 감소시킬 수 있다. Q-학습 과정 중 Q-학습의 수렴을 위해 일련의 상태-행동(state-action)을 선택하는 것이 필요하다. 이러한 선택을 위해 균일 임의 선택방법 (Uniform Random Selection, URS)이 사용될 경우 최적 값의 수렴을 위해서 Q-테이블을 접근하는 회수가 크게 증가한다. 따라서 URS는 실 세계 환경에서의 범용적인 온라인 학습에는 부적절하다. 이와 같은 현상은 URS가 최적의 정책에 대한 이용(exploitation)의 불확실성을 반영하기 때문에 발생하게 된다. 이에 본 논문에서는 보조 마르코프 프로세스(auxiliary Markov process)와 원형 마르코프 프로세스(original Markov process)로 구성되는 혼합 비정적 정책 (Mixed Nonstationary Policy, MNP)을 제안한다. MNP가 적용된 Q-학습 에이전트는 original controlled process의 실행 시에 Q-학습에 의해 결정되는 stationary greedy 정책을 사용하여 학습함으로써 auxiliary Markov process와 original controlled process에 의해 평가 측정된 최적 정책에 대해 1의 확률로 exploitation이 이루어질 수 있도록 하여, URS에서 발생하는 최적 정책을 위한 exploitation의 불확실성의 문제를 해결하게 된다. 다양한 실험 결과 본 논문에서 제한한 방식이 URS 보다 평균적으로 약 2.6배 빠르게 최적 Q-값에 수렴하여 MNP가 적용된 Q-학습 에이전트가 범용적인 온라인 Q-학습이 가능함을 보였다.