• Title/Summary/Keyword: 샤시

Search Result 90, Processing Time 0.027 seconds

A study on formability of truck frame (트럭 프레임의 성형성에 관한 연구)

  • 민홍기;김의석;이화원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.22-30
    • /
    • 1993
  • 본 연구는 MSC/DYNA EXPLICIT CODE를 이용하여 자동차용 샤시 프레임의 성형성을 파악하기 위한 모델링 방식과 단계별 변형양상, 컴퓨터 시뮬레이션의 결과인 스프링백, 잔류응력, 두께변화, 변형률 등을 소개하기로 한다. 1. 프레임 스탬핑 개요. 2. 해석 모델 및 성형조건. 3. 해석결과 및 고찰.

  • PDF

상용차량 소음진동 시험평가 현황

  • 오양섭
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.45-46
    • /
    • 1998
  • 상용차는 대부분 디젤엔진을 사용하고 있고 비교적 강건한 샤시 프레임 구조로 되어있기 때문에 소음 진동특성이 승용차와 상당히 다르며 빈번하게 발생되는 문제도 차이가 있다. 이런 차이에도 불구하고 소음 진동 시험항목은 승용차와 별반 차이가 없으므로 본고에서는 상용차량에서 중요한 몇가지 평가항목에 대해서만 상세하게 언급하고자 한다.

  • PDF

A Simulation Environment Development for Global Chassis Control System of Vehicles (통합 샤시제어 시스템 개발을 위한 시뮬레이션 환경 구축)

  • Hwang T.H.;Park K.;Heo S.J.;Lee M.S.;Lee K.H.;Kee S.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1095-1098
    • /
    • 2005
  • Most electronic chassis control systems until today have been designed with optimization on its own performance. However, According to the increase of the interest regarding a vehicle safety and development of information technique, the integration technique of current chassis systems is being emphasized. Each enterprise proposed it with name of GCC(Global Chassis Control) or UCC(Unified Chassis Control). This study realizes control algorithm of suspension and brake by using the vehicle model of low degree of freedom as the primary stage of realization of integrated chassis control system. The proposed algorithm build the simulation environment connected to the CarSim having full vehicle model of 27 degree of freedom for raising the thrust of results

  • PDF

Progressive Process Design for Delta Sash in Vehicles (차량용 델타샤시의 프로그레시브 공정 설계)

  • Ko, Young Jun;Kwak, Hyo Seo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1161-1170
    • /
    • 2014
  • Delta sash is an important part of automobile door, which has the functions of supporting and guiding seesaw of car's window, preventing dust and air from outside. In previous manufacturing process, each part of the delta sash was independently formed by tandem processes, and rubber is bonded to steel by poisonous glue. So, the previous processes, including roll forming process and toxic gases, had low production rate and high failure rate. In this study, progressive process design of the delta sash was proposed in order to increase productivity and high utilization of the materials. And instead of the poisonous glue used for adhesion of rubber in the previous tandem process, embossing and piercing processes were designed in the new guide to help the rubber to adhere well to steel. And the optimal piercing distance was designed to ensure structural safety, and prototypes were manufactured for verifying reliability of the processes.

The Effect of Active Chassis Vibration Control on the Engine Booming Noise (능동 샤시 진동 제어가 실내 엔진 부밍 소음에 미치는 영향)

  • 정병보;박만복;이용욱;박영진;이종원;강구태;채창국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.991-995
    • /
    • 2002
  • The engine booming noise heard inside a vehicle's cabin is due to the engine vibration that's transferred to the chassis in the form of structural vibration and it often causes discomfort to the passenger. In an effort to seek out the possible relation between the engine booming noise and the engine vibration of a vehicle, a position on the engine mount was selected and the vibration transmission through the position was attenuated to observe the corresponding change in the noise level inside the cabin. A system consisting of an actuator and a hybrid controller that has both the feed-forward and feed-back capabilities was developed in order to carry out the experiment.

  • PDF

A Study on Durability Performance Estimation for Development of Chassis Corner Module (샤시코너모듈 개발을 위한 부품의 내구 성능 예측에 대한 연구)

  • Choi Sungjin;Park Jungwon;Jeon Kwangki;Yoo Youngmyun;Choi Gyoojae;Park Taewon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.159-166
    • /
    • 2006
  • Chassis system has a large influence on ride quality, stability and NVH performance of a car. To improve the performance and reduce cost, the development of chassis modular assemblies is emphasized. To develop chassis corner modules, it is necessary to predict the performance of full vehicle motion such as ride, handling performance, NVH characteristics and durability of modules. In this paper, full vehicle test is performed to acquire the road load data of chassis corner module of passenger car. 3-axis simulator modeling are carried out to simulate reaction force analysis and fatigue analysis of new developed modules. Also, real simulator tests to validate performance of new developed modules are performed. We had developed the accelerated durability test procedure of KATECH PG and it is used to test chassis corner modules at laboratory and simulate durability performance. All these results have been provided to module and parts company and make an important role to develop chassis corner modules.

An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability (차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발)

  • Her, Hyundong;Yi, Kyongsu;Suh, Jeeyoon;Kim, Chongkap
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.