• Title/Summary/Keyword: 생활시간구조

Search Result 182, Processing Time 0.018 seconds

Revision of Nutrition Quotient for Korean adults: NQ-2021 (한국 성인을 위한 영양지수 개정: NQ-2021)

  • Yook, Sung-Min;Lim, Young-Suk;Lee, Jung-Sug;Kim, Ki-Nam;Hwang, Hyo-Jeong;Kwon, Sehyug;Hwang, Ji-Yun;Kim, Hye-Young
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.278-295
    • /
    • 2022
  • Purpose: This study was undertaken to revise and update the Nutrition Quotient (NQ) for Korean adults, a tool used to evaluate dietary quality and behavior. Methods: The first 31 items of the measurable food behavior checklist were adopted based on considerations of the previous NQ checklist, recent literature reviews, national nutrition policies, and recommendations. A pilot survey was conducted on 100 adults aged 19 to 64 residing in Seoul and Gyeonggi Province from March to April 2021 using a provisional 26- item checklist. Pilot survey data were analyzed using factor analysis and frequency analysis to determine whether checklist items were well organized and responses to questions were well distributed, respectively. As a result, the number of items on the food behavior checklist was reduced to 23 for the nationwide survey, which was administered to 1,000 adults (470 men and 530 women) aged 19 to 64 from May to August 2021. The construct validity of the developed NQ (NQ-2021) was assessed using confirmatory factor analysis, linear structural relations. Results: Eighteen items in 3 categories, that is, balance (8 items), moderation (6 items), and practice (4 items), were finally included in NQ-2021 food behavior checklist. 'Balance' items addressed the intake frequencies of essential foods, 'moderation' items the frequencies of unhealthy food intakes or behaviors, and 'practice' items addressed eating behaviors. Items and categories were weighted using standardized path coefficients to calculate NQ-2021 scores. Conclusion: The updated NQ-2021 appears to be suitable for easily and quickly assessing the diet qualities and behaviors of Korean adults.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.