• Title/Summary/Keyword: 생화학적 메탄 수율

Search Result 2, Processing Time 0.016 seconds

Improvement of Solubilization and Anaerobic Biodegradability for Sewage Sludge Using Ultrasonic Pre-treatment (하수슬러지의 초음파 전처리를 통한 가용화 및 혐기성 생분해도 향상)

  • Lee, Chae-Young;Park, Seung-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.83-90
    • /
    • 2008
  • The ultrasonic pre-treatment of sewage sludge (SS) was investigated to increase soluble organic material and to improve anaerobic biodegradability. Ultrasonic disintegration of SS increased the amount of soluble chemical oxygen demand (SCOD), protein and carbohydrate concentrations whereas particle size decreased due to the break-up of cell walls. In terms of anaerobic biodegradability, ultrasonic pre-treatment enhanced the anaerobic biodegradation of SS, leading to the methane gas production improvement. Biochemical methane potential (BMP) of SS was 211.3 ml $CH_4/gVS$ whereas BMP after ultrasonic pre-treatment was 294.3 ml $CH_4/gVS$. The improvement in BMP for SS treated with ultrasonic disintegration was as high as 40 %. This result indicated that disintegration of SS was efficient for enhancing anaerobic biodegradability.

  • PDF

Anaerobic Biodegradability of Leachates Generated at Landfill Age (매립년한에 따른 침출수의 혐기성 생분해 특성)

  • Shin, Hang-Sik;Lee, Chae-young;Kang, Ki-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The composition of leachates varies depending on the waste characteristics, landfill age and landfilling method. Generally, leachates contain high dissolved organic substance and ammonia nitrogen whereas phosphorus concentration was very low. Leachate A produced from young landfill is characterized by high BOD5/COD ratio (0.8) whereas leachate C produced from old landfill has lower BOD5/COD ratio (0.1). Maximum biochemical methane potential of leachate A, B (from medium landfill) and C were 271,106 and 4 ml CH4/g-COD, respectively. On the other hand, the maximum biodegradability of leachate A, B, and C were 75,30, and 1%, respectively. These results indicated that anaerobic treatment of leachate from young landfill was effective in removing organic pollutants. In case of leachate C, carbon might reside in the form of large molecular weight organic compounds such as lignins, humic acids and other polymerized compounds of soils, which are resistant to biodegradation. The lag-phase period increased with the increasing organic concentration in leachate. In case of leachate A of concentration greater than 25%, the lag-phase period increased sharply. This implied that the start-up period of anaerobic process using an unacclimated inoculum could be extended due to the higher concentration of leachate. This relatively long lag-phase is probably related to the fact that most of the inhibitory compounds have been diluted beyond their inhibitory concentrations of less than 50%. Furthermore, the ultimate methane yield and methane production rate decreased as leachate concentration increased. It was anticipated the potential inhibition was related with the steady-state inhibition as well as the initial shock load.

  • PDF