• Title/Summary/Keyword: 생태기능상태

Search Result 129, Processing Time 0.034 seconds

Evaluation of the Reducing Efficiency of Vertical and Horizontal Wetland Using Intermittent Flow System (간헐식 흐름방식을 활용한 수직·수평 습지의 정화효율 평가)

  • Joo, Kwang Jin;Lee, Dong Min;Kim, Ki Jung;Cho, Yong Chul;Jang, Gwang Hyeon;Choi, I Song;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.142-148
    • /
    • 2017
  • Nitrogen and phosphorus are key factors in causing eutrophication of water body. In this study, ceramics media was selected to increase the removal efficiency of nitrogen and phosphorus. We designed vertical, horizontal flow constructed wetlands to create aerobic and anaerobic flow conditions by using the media, then proceeded to performance evaluations after acrylic reactors were produced. In the case of vertical and horizontal flow constructed wetlands, we measured oxygen concentrations to evaluate aerobic and anaerobic conditions. we got the result of 2.7 mg/L in the aerobic condition, N.D in the anaerobic condition respectively, which suited our purpose. The result of the combined vertical and horizontal flow condition showed that the removal efficiency of SS was 94%, 91%, 61% at 140 min, 80 min, 60 min of running times, respectively, and the removal efficiency of T-P was 84%, 71%, 63% during each running time. In case of T-N, the removal efficiency was 63%, 49%, 42% during each running time. We found that the reactor exerted better removal efficiency when in the short time compared to 12 - 24 hr residence time of existing wetlands. In this study, we conducted experiments to explore functional effects after applying combined vertical and horizontal flow methods in the field. Further study will be carried out to identify its mechanism and administrative perspective.

Evaluation of Channel-forming Discharge for the Abandoned Channel Restoration Design of Cheongmi Stream (청미천 구하도 복원 설계를 위한 하도형성유량 산정)

  • Ji, Un;Kang, Jun-Gu;Yeo, Woon-Kwang;Han, Seung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1113-1124
    • /
    • 2009
  • The abandoned channel restoration is one of methods to enhance the environmental function and ecological habitat as well as the functions of water-utilization and flood control. The channel-forming or dominant discharge must be evaluated and defined to design the cross-sectional and plane geometries of the stable and equilibrium channel for the abandoned channel restoration project. In general, bankfull discharge, specified recurrence interval discharge, and effective discharge have been used to decide the channel-forming discharge. In this study, bankfull discharge, specified recurrence interval discharge, and effective discharge were calculated and compared for the abandoned channel restoration site of Cheongmi Stream and their relations to historical bed changes were analyzed. The bankfull discharge, 488 $m^3/s$, of the abandoned channel restoration site of Cheongmi Stream was calculated using HEC-RAS data and ranged between 1.5-year and 2-year recurrence discharges. Also, the effective discharge evaluated with the sediment rating curve and mean daily discharge data is greater than the bankfull discharge. According to the survey data of 1994 and 2008, the bed elevation of the study reach was decreased over time. It is indicated that the channel bed is changing to the stable condition to allow the effective discharge.

Development of a Method for Determining the Instream Flow and Its Application: II. Application and Result (하천유지유량 결정 방법의 개발 및 적용: II. 적용 및 결과)

  • 김규호;김선미
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.185-202
    • /
    • 1996
  • The newly-developed method for estimating the instream flow, proposed by the authors (1996), was applied to the main channel reach of the Kum River basin in Korea. Performance of the suggested method was tested through the evaluations of the required flow, instream flow, and river-management flow which were estimated at five main reaches with each representative station. The mean drought flow was used as the object flow to evaluate the minimum instream flow for the mid- and large-size rivers. Water quality prediction by using the QUAL2E model was made for both cases that the planned wastewater treatment facilities may and may not be constructed. The required flow for the fish habitat was evaluated for 9 representative fish species. The instream flows required for the riverine aesthetics at Kong-ju and Puyo scenary points, for river navigation at natural channel conditions, and for current and potential recreation activities were evaluated, respectively. The instream flows required for other items are not quantified. On the whole, it is shown that the instream flow to maintain the natural riverine functions such as fish habitat, and riverine aesthetics govern the upstream reaches of the Kum River, and the artificial riverine functions such as conservation of water quality, navigation and recreations govern the middle and downstream reaches. Especially, it is found that the instream flow requirement depends largely upon the construction of wastewater treatment facilities at the Kum River basin.

  • PDF

A Study on the Evaluation Method of Close-to-Nature Stream Improvement Works (자연 친화적인 하천 정비사업의 평가방법에 관한 연구)

  • Kim, Seok-Gyu;Kim, Chul
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.503-510
    • /
    • 2007
  • In the area of such a nature-friendly stream improvement, it is not established yet which engineering method is suitable for stream environment, due to lack of technology. Therefore, although nature-friendly stream improvement was done with expensive engineering method, the effect has not been fully confirmed, which results from the absence of overall valuation tool of stream improvement. In this regard, it is necessary to develop and apply comprehensive and diverse valuation methods covering stream functions to the analysis of stream improvement. In this study, we collected data from years' of monitoring on the Gyeongcheon river, which is located in Sunchang-eup, Jeollabuk-do and recently underwent an nature-friendly stream improvement work. Based on the data, we developed a series of valuation methods such as stream naturalness evaluation, life cycle evaluation, amenity evaluation, and economic benefit analysis to consider the environmental function of stream from a comprehensive perspective. Stream naturalness evaluation is a quantitative analysis of how natural a stream is, and includes additional valuation items such as ecosystem and water quality for the purpose of overall valuation, unlike existing research focusing on physical elements and structural characteristics of a stream. We developed a method of stream valuation with life cycle assessment to river reorganization project. Amenity evaluation method was developed as a means to analyze residents' satisfaction with stream improvement through questionnaires. Economic benefit analysis was developed as a means to determine the attributes of environmental water supply, ecosystem, river maintenance, and water quality and predict economic benefits using contingent valuation method (CVM) and multi-attribute utility analysis (MAUA) method in order to analyze economic benefits brought in by stream improvement. It is considered that the four methods developed in this study make possible to conduct an overall and quantitative analysis of stream improvement.

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.

Zooplankton Community as an Indicator for Environmental Assessment of Aquatic Ecosystem: Application of Rotifer Functional Groups for Evaluating Water Quality in Eutrophic Reservoirs (동물플랑크톤 군집의 수생태계 환경 평가 지표 활용: 부영양화 저수지 수질 평가를 위한 윤충류 기능성 그룹의 적용)

  • Oh, Hye-Ji;Chang, Kwang-Hyeon;Seo, Dong-Il;Nam, Gui-Sook;Lee, Eui-Haeng;Jeong, Hyun-Gi;Yoon, Ju-Duk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.404-417
    • /
    • 2017
  • In this study, we analyzed response patterns of rotifer community to eutrophic state, and estimated the applicability of rotifer community as an environmental indicator for highly eutrophicated reservoirs. In order to evaluate the relationships among spatial and temporal distributions and the water quality of rotifer community, we selected the Jundae Reservoir and Chodae Reservoir in Chungcheongnam-do, Korea, which are geographically adjacent but have different water quality, particularly in their eutrophic states. For the analyses on their correlations, monthly survey of water quality and rotifer community, was conducted from April to November 2013 in both reservoirs. The rotifer community was divided into different compositions of functional groups as well as species. Functional groups were classified according to the structure and shape of trophi which can represent feeding behavior of rotifer genus. To reflect ecological characteristics of species, body size and habitat preferences were also considered. Species-based composition did not show a consistent tendency with water quality parameters related with eutrophication. On the contrary, functional group composition showed relatively clear group-specific patterns, increasing or decreasing according to the parameters. The results suggest the possible application of rotifer functional group composition as an indicatorforthe lentic systems, especially hyper-eutrophicated reservoirs. The present study can suggest the applicability based on the field observations from the limited time scale and sites, and further studies on feeding behavior of the rotifer functional group and its interactions with environmental variables are necessary for the further application.

Effects of Acid Mine Drainage from Abandoned Coal Mines on Benthic Macroinvertebrate Communities in the Upper Reaches of the Nakdong River (낙동강 상류 폐탄광의 산성광산배수가 저서성 대형무척추동물 군집에 미치는 영향)

  • Lee, Hwang-Goo;Jung, Sang-Woo;Kim, Dong-Gun;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.72-81
    • /
    • 2012
  • We investigated the effects of acid mine drainage (AMD) from abandoned coal mines on benthic macroinvertebrate communities in the upper reaches of the Nakdong River from May to October in 2009. Qualitative and quantitative sampling (Surber sampler: $50{\times}50$ cm; mesh size, 0.2 mm) was conducted at 7 study sites and 3 control sites in the study area. We thus sampled 117 species belonging to 53 families, 15 orders, 6 classes, and 5 phyla; the Ephemeroptera, Plecoptera, and Trichoptera group (EPT-group) represented the majority of the benthic macroinvertebrate community (71 species; 64.5%). In the quantitative sampling, a total of 11,575 individuals belonging to 58 species of benthic maroinvertebrates were sampled from the study sites (Sites 1-7), whereas 2,844 individuals belonging to 79 species were sampled from the control sites (Sites A-C). Tolerant species such as oligochaetes, $Epeorus$ $pellucidus$, $Baetis$ $fuscatus$, Hydropsychidae species, and Chironomidae species were predominant in the study sites. The community indices for the study sites, such as MacNaughton's dominance index (DI) (mean${\pm}$SD, $0.52{\pm}0.21$; range, 0.33-0.85) and the Shannon diversity index ($H^{\prime}$) ($2.06{\pm}0.60$; 1.06-2.57), were different from those for the control sites (DI: $0.29{\pm}0.07$, 0.22-0.35; $H^{\prime}$: $3.13{\pm}0.14$; 3.03-3.30). In the study sites, shredders and scrapers were scarce, whereas gathering-collectors (mainly Chironomidae species) were relatively abundant, as were clingers and burrowers. The detrended correspondence analysis (DCA) and similarity analyses showed that benthic macroinvertebrate communities in the study sites were clearly separated from those of the control sites, with the greatest dissimilarity being noted at the uppermost study site (Site 1), which is located close to an abandoned coal mine. The Korean saprobic index (KSI) and the ecological score using benthic macroinvertebrates (ESB) showed that the uppermost study site (Site 1) was ${\alpha}$-mesosaprobic or heavily polluted, whereas other study sites were in a fair or relatively good condition.

The Comparative Studies on the Urban and Rural Landscape for the Plant Diversity Improvement in Pond Wetland (농촌과 도시지역 비교를 통한 연못형습지의 식생다양성 증진방안 연구)

  • Son, Jin-Kwan;Kong, Min-Jae;Kang, Dong-Hyeon;Nam, Hong-Shik;Kim, Nam-Choon
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.62-74
    • /
    • 2015
  • Urban areas are variously under threat including deterioration of ecological functions. Many pond wetland types have been created as part of an effort to improve and restore this urban environment. This study was arranged to examine improvement plans of wetlands in urban areas by analyzing semi-natural wetlands in farm areas. As for environment for water quality, it suggested the inflow of natural water neighboring rivers or the direct inflow of rain as the improvement plans. The result which analyzed soil pH, OM, and T-N content of the soil environment mentioned that urban areas supplied artificial sluices, removed apoptotic bodies, and used artificial soil and waterproofing materials and use of natural materials in design and construction, the sluice state of the natural form, and negligence of autumn plants were suggested as the improvement plans. Florae appeared in the subject sites of the study have found that there are 35 families 69 species in urban areas and 53 families 142 species in rural areas. As the average has found that there are 18.5 families 29.3 species in 4 urban areas and 26.3 families 53.5 species in 4 rural areas, the big difference between them was analyzed. As the cause has found that there are differences in yearly plants in farming areas when compared to urban areas, creation of various basic environments including soil and water quality was suggested to make yearly plants settle down widely. Naturalized plants have found that there are no big differences between urban areas and rural areas. However, the average of the naturalized ratio in urban areas is 17.4% as the naturalized plants are about 1/4 of the appeared plants. As it was analyzed to be higher than 7.7%, the average of the naturalized ratio in farming areas as the big difference, creation of various inhabiting environments was suggested to make more yearly plants appear like the analyzed result of the life type. Consideration of placement, materials, and inhabiting environments was suggested to make creation of wetlands well appreciated to improve functions of wetlands in urban areas. It is expected that the above results of the study will be utilized in creation and improvement of the pond wetlands which can play a huge role in increase and improvement of biological diversity in urban areas.

Distribution of Bacterial Decomposers in Lake Khuvsgul, Mongolia (몽골 훕스굴 호수 수층에서 유기물질 분해세균의 분포)

  • Jung, You-Jung;Jung, Da-Woon;Kim, Ju-Young;Zo, Young-Gun;Yim, Joung-Han;Lee, Hong-Kum;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • To understand the ecological function of heterotrophic bacterial community in water column of large freshwater lakes in the permafrost zone, we investigated the structure and function of bacterial community in Lake Khuvsgul, Mongolia. Species composition of overall bacterial community was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments, and bacteria that can be cultured at 10oC were isolated and characterized. Based on the depth profile of environmental parameters, thermocline and chemocline were recognized at the 5~10 m zone of the water column. The stratified DGGE profile indicated that the discontinuity of water properties might influence the structure of bacterial community: band profiles in the 0~5 m zone were diverse with large change by depth, but the profile was relatively stable at the $\geq$10 m zone, with predominance of the band identified as Acidovorax facilis. Bacterial cultures were screened for protease, cellulase, amylase and lipase activity, and 23 isolates were selected for high activity of the hydrolytic enzymes. The isolates were identified based on their 16S rRNA gene sequences. In the surface water (zero meter depth), Acidovorax defluvii and Sphingobacterium faecium with high cellulase activity were present. Flavobacterium succinicans, Mycoplana bullata and A. facilis were stably predominant isolates at 2 m, 5 m, and $\geq$10 m depths, respectively. F. succinicans isolates showed high protease activity while M. bullata isolates showed moderate levels of protease and celluase activity. A. facilis isolates showed either cellulase or lipase activity, exclusively to each other. According to the profile of growth rates of the isolates in the temperature range of $0\sim42^{\circ}C$, the surface-zone (0~5 m) isolates were facultative psychrophiles while isolates from $\geq$10 m depth were typical mesophiles. This stratification is believed to be due to stratified availability of organic materials to the bacterial decomposers. In the water column below the chemoline, the environment is extremely oligotrophic so that the trait of rapid growth in low temperature might not be demanded by deep-lake decomposers. The stratified distribution of community composition and decomposer activity in Lake Khuvsgul implies that ecological functions of bacterial community in lakes of cold region are sharply divided by water column stratification.

Mycorrhizae, mushrooms, and research trends in Korea (균근과 버섯 그리고 국내 연구동향)

  • An, Gi-Hong;Cho, Jae-Han;Han, Jae-Gu
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant's roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizae-mediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.