• 제목/요약/키워드: 생체모방 수중로봇

검색결과 16건 처리시간 0.022초

생체모방형 수중다관절 로봇의 유영계획 (Swimming Plans for a Bio-inspired Articulated Underwater Robot)

  • 김희중;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.782-790
    • /
    • 2013
  • In this paper, we propose a better solution for swimming plans of an articulated underwater robot, Crabster, with a view point of biomimetics. As a biomimetic model of underwater organisms, we chose diving beetles structurally similar to Crabster. Various swimming locomotion of the diving beetle has been observed and sorted by robotics technology through experiments with a high-speed camera and image processing software Image J. Subsequently, coordinated patterns of rhythmic movements of the diving beetle are reproduced by simple control parameters in a parameter space which make it easy to control trajectories and velocities of legs. Furthermore, a simulation was implemented with an approximated model to predict the motion of the robot under development based on the classified forward and turning locomotion. Consequently, we confirmed the applicability of parameterized leg locomotion to the articulated underwater robot through the simulated results by the approximated model.

다족형 생체모방 수중 로봇(CALEB10)의 Pitch 유영 제어 (Pitch Directional Swimming Control of Multi-Legged Biomimetic Underwater Robot (CALEB10))

  • 이한솔;이지홍
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.228-238
    • /
    • 2017
  • The CALEB10 is a multi-legged biomimetic underwater robot. In the last research, we developed a swimming pattern named ESPG (Extended Swimming Pattern Generator) by observing diving beetle's swimming actions and experimented with a positive buoyancy state in which CALEB10 floats on the water. In this paper, however, we have experimented with CALEB10 in a neutral buoyancy state where it is completely immersed in water for pitch motion control experiment. And we found that CALEB10 was unstably swimming in the pitch direction in the neutral buoyancy state and analyzed that the reason was due to the weight proportion of the legs. In this paper, we propose a pitch motion control method to mimic the pitch motion of diving beetles and to solve the problem of CALEB10 unstably swimming in the pitch direction. To control the pitch motion, we use the method of controlling additional joints while swimming with the ESPG. The method of obtaining propulsive force by the motion of the leg has a problem of giving propulsive force in the reverse direction when swimming in the surge direction, but this new control method has an advantage that a propulsive moment generated by a swimming action only on a target pitch value. To demonstrate validity this new control method, we designed a dynamics-based simulator environment. And the control performance to the target pitch value was verified through simulation and underwater experiments.

다족형 생체모방 수중 로봇(CALEB10)의 각 자유도를 분리한 자세 제어 (Posture Control through Decomposed Control for Multi-Legged Biomimetic Underwater Robot (CALEB10))

  • 이한솔;이지홍
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.63-71
    • /
    • 2018
  • This paper describes a study on posture control of the multi-legged biomimetic underwater robot (CALEB10). Because the underwater environment has a feature that all degrees of freedom are coupled to each other, we designed the posture control algorithm by separating each degree of freedom. Not only should the research on posture control of underwater robots be a precedent study for position control, but it is also necessary to compensate disturbance in each direction. In the research on the yaw directional posture control, we made the drag force generated by the stroke of the left leg and the right leg occur asymmetrically, in order that a rotational moment is generated along the yaw direction. In the composite swimming controller in which the controllers in each direction are combined, we designed the algorithm to determine the control weights in each direction according to the error angle along the yaw direction. The performance of the proposed posture control method is verified by a dynamical simulator and underwater experiments.

유영과 보행이 가능한 생체모방 수중 로봇의 설계개념과 근사모델을 활용한 모의실험 (Bio-inspired Walking and Swimming Underwater Robot Designing Concept and Simulation by an Approximated Model for the robot)

  • 김희중;전봉환;이지홍
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.57-66
    • /
    • 2014
  • This paper describes the design concept of a bio-inspired legged underwater and estimating its performance by implementing simulations. Especially the leg structure of an underwater organism, diving beetles, is fully adopted to our designing to employ its efficiency for swimming. To make it possible for the robot to both walk and swim, the transformable kinematic model according to applications of the leg is proposed. To aid in the robot development and estimate swimming performance of the robot in advance, an underwater simulator has been constructed and an approximated model based on the developing robot was set up in the simulation. Furthermore, previous work that we have done, the swimming locomotion produced by a swimming patten generator based on the control parameters, is briefly mentioned in the paper and adopted to the simulation for extensive studies such as path planning and control techniques. Through the results, we established the strategy of leg joints which make the robot swim in the three dimensional space to reach effective controls.

생체모방형 수중 다관절 로봇의 추진력 제어를 위한 유영 패턴 재생성 (Modified Swimming Pattern to Control Propulsive Force for Biomimetic Underwater Articulated Robot)

  • 정성환;이지홍
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.285-292
    • /
    • 2016
  • For articulated swimming robots, there have been no researches about controlling the motion or trajectory following. A control method for articulated swimming robot is suggested by extending a previous algorithm, ESPG (Extended Swimming Pattern Generator). The control method focuses on the situation that continuous pre-determined swimming pattern is applied for long range travelling. In previous studies, there has not been a way to control the propulsive force when a swimming pattern created by ESPG was in progress. Hence, no control could be made unless the swimming pattern was completed even though an error occurred while the swimming pattern was in progress. In order to solve this problem, this study analyzes swimming patterns and suggests a method to control the propulsive force even while the swimming pattern was in progress. The angular velocity of each link is influenced and this eventually modifies the propulsive force. However, The angular velocity is changed, a number of problems can occur. In order to resolve this issue, phase compensation method and synchronization method were suggested. A simple controller was designed to confirm whether the suggested methods are able to control and a simulation has affirmed it. Moreover, it was applied to CALEB 10 (a biomimetic underwater articulated robot) and the result was verified.

IR 센서 및 Compass 센서를 이용한 생체 모방형 수중 로봇의 장애물 인식 및 회피 (Obstacle Recognition and Avoidance of the Bio-mimetic Underwater Robot using IR and Compass Senso)

  • 이동혁;김현우;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.928-933
    • /
    • 2012
  • In this paper, the IR and compass sensors for the underwater system were used. The walls of the water tank have been recognized and avoided treating the walls as obstacles by the bio-mimetic underwater robot. This paper is consists of two parts: 1.The hardware part for the IR and compass sensors and 2.The software part for obstacle avoidance algorithm while the bio-mimetic robot is swimming with the obstacle recognition. Firstly, the hardware part controls through the RS-485 communications between a microcontroller and the bio-mimetic underwater robot. The software part is simulated for obstacle recognition and collision avoidance based upon the data from IR and compass sensors. Actually, the bio-mimetic underwater robot recognizes where is the obstacle as well as where is the bio-mimetic robot itself while it is moving in the water. While the underwater robot is moving at a constant speed recognizing the wall of water tank as an obstacle, an obstacle avoidance algorithm is applied for the wall following swimming based upon the IR and compass sensor data. As the results of this research, it is concluded that the bio-mimetic underwater robot can follow the wall of the water tank efficiently, while it is avoiding collision to the wall.