• Title/Summary/Keyword: 생체모방로봇

Search Result 79, Processing Time 0.02 seconds

Trends in Biomimetic Vision Sensor Technology (생체모방 시각센서 기술동향)

  • Lee, Tae-Jae;Park, Yun-Jae;Koo, Kyo-In;Seo, Jong-Mo;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1178-1184
    • /
    • 2015
  • In conventional robotics, charge-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) cameras have been utilized for acquiring vision information. These devices have problems, such as narrow optic angles and inefficiencies in visual information processing. Recently, biomimetic vision sensors for robotic applications have been receiving much attention. These sensors are more efficient than conventional vision sensors in terms of the optic angle, power consumption, dynamic range, and redundancy suppression. This paper presents recent research trends on biomimetic vision sensors and discusses future directions.

A Biomimetic Artificial Neuron Matrix System Based on Carbon Nanotubes for Tactile Sensing of e-Skin (인공촉각과 피부를 위한 탄소나노튜브 기반 생체 모방형 신경 개발)

  • Kim, Jong-Min;Kim, Jin-Ho;Cha, Ju-Young;Kim, Sung-Yong;Kang, In-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.188-192
    • /
    • 2012
  • In this study, a carbon nanotube (CNT) flexible strain sensor was fabricated with CNT based epoxy and rubber composites for tactile sensing. The flexible strain sensor can be fabricated as a long fibrous sensor and it also may be able to measure large deformation and contact information on a structure. The long and flexible sensor can be considered to be a continuous sensor like a dendrite of a neuron in the human body and we named the sensor as a biomimetic artificial neuron. For the application of the neuron in biomimetic engineering, an ANMS (Artificial Neuron Matrix System) was developed by means of the array of the neurons with a signal processing system. Moreover, a strain positioning algorithm was also developed to find localized tactile information of the ANMS with Labview for the application of an artificial e-skin.

Liquid Crystal Elastomer-Based Soft Actuators (액정 엘라스토머 기반 소프트 액추에이터)

  • Bae, Jaehee;Kim, Keumbee;Choi, Subi;Ahn, Suk-kyun
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.6
    • /
    • pp.19-31
    • /
    • 2021
  • 자극응답성 액정 엘라스토머(liquid crystal elastomer)는 하이드로겔(hydrogel), 형상 기억 고분자(shape memory polymer)와 더불어 생체 특성을 모방한 인공 근육, 소프트 액추에이터 및 소프트 로봇을 위한 스마트 소재로 최근 높은 관심을 받고 있다. 특히, 액정 엘라스토머는 고무 탄성과 액정 이방성이 결합된 비등방성 탄성 고분자로, 열, 빛, 전기 및 수분과 같은 외부자극에 반응하여 가역적이며, 액정 분자들의 배향조절을 통한 프로그램된 변형이 가능하다. 액정 엘라스토머가 개념 증명을 하는 수준을 넘어 실제로 유용한 소프트 액추에이터 및 로봇 시스템에 적용되기 위해서는 우수한 구동력 및 작업 용량, 높은 구동 변형률, 빠른 응답 시간, 낮은 구동 온도, 다양한 외부 자극반응성 및 높은 에너지 전환 효율 등을 확보하는 것이 중요하다. 본 기고문에서는 액정 엘라스토머의 개념에 대해 소개하고, 이러한 소재가 소프트 액추에이터로써 광범위하게 활용될 수 있도록 다양한 성능들을 향상시킬 수 있는 방법에 대해 소개하고자 한다.

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

Locomotion of Dog-like Quadruped Robots: Walk and Trot (견형 4족 로봇의 위치 이동: 걷기 및 속보)

  • Lim, Seung-Chul;Kim, Kwang-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • This paper is concerned with locomotion of dog-like quadruped robots that can adapt to various terrains, mainly dealing with implementation methods and characteristics of static and dynamic gaits. To this end, a 12-DOF robot is built in house, motional trajectories of its body and feet are generated mimicking biological life, and the corresponding leg joint angles are analytically obtained by inverse kinematics. Such joint angle data are then applied to the robot's ADAMS model for computer simulations so that the planned walk and trot gaits are both confirmed dynamically stable. However, contrary to the simulation results, previous trot patterns showed unstable behavior during experiments. This problem led us to analyze the reason, and in the course we discovered the importance of maximally utilizing the concept of WSM rather than ZMP and therefore reducing the gait period to secure the stability of dynamic gaits such as trot.

Development of hybrid interfacial structure on wet surfaces for robotic gripper applications (젖은 표면 파지용 로봇 그리퍼 응용을 위한 하이브리드 계면 구조 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.685-690
    • /
    • 2022
  • Recent research on soft adhesives has sought to understand in depth how their chemical or mechanical structures interact strongly with living tissues. The aim is to optimally address the unmet needs of patients with acute or chronic diseases. Synergy adhesion, which includes both electrostatic (hydrogen bonds) and mechanical interactions (capillary stress), appears to be effective in overcoming challenges related to long-term unstable bonds to wet surfaces. Here, we report electrostatic and mechanically synergistic mechanisms of adhesion without chemical residues. To infer the mechanism, a thermodynamic model based on custom combination adhesives has been proposed. The model supported experimental results that thermodynamically controlled swelling of hydrogels embedded in elastomeric structures improves biofluidic insensitive on-site adhesion to wet surfaces and improves detachment without chemical residues in the direction of peeling.

Understanding and Research Trends in Liquid Crystal Elastomer Fibers (액정 엘라스토머 섬유의 이해와 연구동향)

  • Young Been Kim;Dae Seok Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.347-356
    • /
    • 2023
  • Liquid crystal elastomer (LCE) fibers have been widely applied in various fields, such as soft robots and biomimetic actuators, in a one-dimensional form. LCEs possess the characteristics of both fluidity and solid order, as well as the elasticity of rubber, and exhibit stimulus-response based on these properties. In particular, by programming the responsiveness to various stimuli such as heat, light, electric fields, and magnetic fields in terms of shape-changing, various movements such as lifting, twisting, and rotating can be realized with high degrees of freedom. Therefore, LCE fibers have the potential for application in various fields such as artificial muscles, soft robots, wearable technologies, and sensing technologies. The research on liquid crystal elastomer fibers is evaluated to have high applicability in various fields in the Fourth Industrial Revolution as a smart material that can include various functionalities beyond simple fibers. In this review, we introduce the structure and basic characteristics of liquid crystal elastomer fibers, the latest research trends on orientation-based fabrication methods, and various applications such as artificial muscles, smart fabrics, and soft robots.

Artificial Intelligence Art : A Case study on the Artwork An Evolving GAIA (대화형 인공지능 아트 작품의 제작 연구 :진화하는 신, 가이아(An Evolving GAIA)사례를 중심으로)

  • Roh, Jinah
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.311-318
    • /
    • 2018
  • This paper presents the artistic background and implementation structure of a conversational artificial intelligence interactive artwork, "An Evolving GAIA". Recent artworks based on artificial intelligence technology are introduced. Development of biomimetics and artificial life technology has burred differentiation of machine and human. In this paper, artworks presenting machine-life metaphor are shown, and the distinct implementation of conversation system is emphasized in detail. The artwork recognizes and follows the movement of audience using its eyes for natural interaction. It listens questions of the audience and replies appropriate answers by text-to-speech voice, using the conversation system implemented with an Android client in the artwork and a webserver based on the question-answering dictionary. The interaction gives to the audience discussion of meaning of life in large scale and draws sympathy for the artwork itself. The paper shows the mechanical structure, the implementation of conversational system of the artwork, and reaction of the audience which can be helpful to direct and make future artificial intelligence interactive artworks.

Biomimetic Gyroscope Integrated with Actuation Parts of a Robot Inspired by Insect Halteres (평형곤을 모사한 생체모방형 구동부 일체형 각속도 센서)

  • Jeong, Mingi;Kim, Jisu;Jang, Seohyeong;Lee, Tae-Jae;Shim, Hyungbo;Ko, Hyoungho;Cho, Kyu-Jin;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.705-709
    • /
    • 2016
  • Micro-electro-mechanical systems (MEMS) gyroscopes are widely used in various robot applications. However, these conventional gyroscopes need to vibrate the proof mass using a built-in actuator at a fixed resonance frequency to sense the Coriolis force. When a robot is not moving, the meaningless vibration of the gyroscope wastes power. In addition, this continuous vibration makes the sensor vulnerable to external sound waves with a frequency close to the proof-mass resonance frequency. In this paper, a feasibility study of a new type of gyroscope inspired by insect halteres is presented. In dipterous insects, halteres are a biological gyroscope that measures the Coriolis force. Wing muscles and halteres are mechanically linked, and the halteres oscillate simultaneously with wing beats. The vibrating haltere experiences the Coriolis force if the insect is going through a rotational motion. Inspired by this haltere structure, a gyroscope using a thin mast integrated with a robot actuation mechanism is proposed. The mast vibrates only when the robot is moving without requiring a separate actuator. The Coriolis force of the mast can be measured with an accelerometer installed at the tip of the mast. However, the signal from the accelerometer has multiple frequency components and also can be highly corrupted with noise, such that raw data are not meaningful. This paper also presents a suitable signal processing technique using the amplitude modulation method. The feasibility of the proposed haltere-inspired gyroscope is also experimentally evaluated.