• Title/Summary/Keyword: 생체건축자재

Search Result 3, Processing Time 0.016 seconds

특집:자연모사 그린테크놀로지 - 생체모방 경량 소재 기술

  • Kim, Hyeong-Sun;Kim, Yeong-Hui;Kim, Do-Gyeong
    • 기계와재료
    • /
    • v.23 no.4
    • /
    • pp.36-44
    • /
    • 2011
  • 생체모방 경량 나노복합 에코소재기술은 자연계에 존재하는 물질의 구조를 모방하여 저온 저에너지 소모공정을 통하여 고경량 및 고강도를 갖는 나노복합체를 제조하는 친환경 신소재 기술이다. 고효율 저공해 성능에 초점을 맞추어 $CO_2$ 배출 및 지구온난화를 억제하고 웰빙사회에 적합한 차량을 개발하는 것이 현재 전세계 자동차회사들의 주된 관심사이다. 이러한 상황에 생체모방기술은 에너지 환경산업분야의 소재로 응용하는 원천기술로 기대된다. 이 생체모방기술은 자연 친화적 재료를 개발하여 하이브리드/전기 자동차의 내/외장재, 고효율 건축자재, 첨단 항공우주 신소재에도 응용이 가능하다. 최근에 보고된 생체모방 경량 나노 복합 에코소재 기술을 조사하였다.

  • PDF

Experimental Research on 2nd generation of Cyanobacteria Living Building Material (2세대 남세균 혼입 생체 건축 자재 생산을 위한 잔골재-젤라틴 복합체의 실험적 연구)

  • Park, Jiyoon;Son, Dasom;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.197-198
    • /
    • 2023
  • Construction waste takes about 50% of total industrial waste. Researchers focuses to decrease the amount of construction waste by recycling the waste during the construction site. However, research about recycling the gelatin-sand composite is not yet been studied. This research is an experimental research on recycling the total specimen of gelatin-sand composite. Two methods were held when making the 2nd generation of the gelatin-sand specimen. As a result, there was no difference in flexural strenght between two different method of 2nd generation of specimen. However, the second method of 2nd generation showed about 20% higher compressive strength than the first method.

  • PDF

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.