• Title/Summary/Keyword: 생애 주기 비용

Search Result 300, Processing Time 0.025 seconds

Assessment of Facility Management Functions for Life-Cycle Information Sharing (생애주기 정보공유를 위한 자산관리 업무기능 분석)

  • Lee, Kwangjin;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.6
    • /
    • pp.40-52
    • /
    • 2016
  • In the 1960s and 1970s when Korea experienced rapid economic growth, a considerable number of buildings were constructed in the country. And since 2000, a large number of sizable and complex buildings have been being built. Specifically, as the operation and maintenance cost alone accounts for 85% of the life cycle cost of a building, efficient Facility Management (FM) is required. However, data needed in the operation and maintenance phase are not sufficiently exchangeable with data created in other phases like the planning, design and construction phases. The upper phase has higher value of data but data exchange rate is low, resulting in inefficiency. To this end, this research derived major business functions for facility management: three categories and 19 detailed functions in classification from owner's perspective. Based on the derived items, this research proposes a methodology to evaluate the 'FM Workload', 'Facility Management (FM) Data', and 'FM Data Created in Engineering and Construction Phases' thereby analyzing plans for efficient operation and maintenance. The applicability of proposed methodology was tested by examining real-world cases of public and private companies.

A Case Study on the Reduction Costs Prediction of a Reinforced Concrete Bridge using LCC method (Life Cycle Cost 기법에 의한 RC Slab 교량의 절감비용 예측에 관한 연구)

  • Kwon, Suk-Hyun;Kim, Sang-Beom;Park, Yong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.160-170
    • /
    • 2007
  • This study predicts Life Cycle Cost of RC Slab bridge case in maintenance and operation level and calculated economic efficiency by the avoidable costs of a bridge. This result of the study can be summarized as follow: (1) LCC analysis model on the bridge case is suggested. (2) Maintenance and operation level of a bridge have been divided, and LCC of the bridge case has been predicted at current maintenance and operation level and required maintenance and operation level. (3) Reduction costs is predicted by LCC of the bridge case, and its economic efficiency is calculated.

On Analysis of Undertaking Accomplishment Process for the BTL Project (BTL사업의 사업수행 절차 분석에 관한 연구)

  • Chun, Jin-Ku;Lim, Jong-Ah;Park, Young-Dae
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.917-920
    • /
    • 2007
  • Private companies will get back their investment by leasing facilities to the government, Since act on private participation in infrastructure were changed in January 2005, BTL(Build Transfer Lease) project of introduced in the domestic construction market for the purpose of providing public facilities with the public. BTL projects is for with approximately project life cycle form plan to maintenance the success of the project totally depends on the capability and role of concessionaire. Accordingly, this study is aimed to improve in order to proceed with BTL project efficiently, a clear standard for the item of evaluation was presented.

  • PDF

Development of System and Cost Function Model for Life Cycle Cost Analysis of Bridge (교량의 생애주기비용 분석을 위한 비용함수 모델 및 시스템 개발)

  • Park Mi-Yun;Sun Jong-Wan;Eom In-Soo;Cho Hyo-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.704-711
    • /
    • 2005
  • Recently Life Cycle Cost Analysis for civil infrastructures such as pavements, bridges, and dams has been emphasized However, so far, there are few systems available for life cycle cost analysis of bridges at design stage. Therefore, the objective of this paper is to develop a user-friendly life-cycle cost analysis system for LCC-effective optimal design decision making at design stage. The program is based on the proposed LCC model, formulation, analysis modules and systematic procedure that suit Korean construction conditions. It is expected that the developed system can be effectively utilized for more LCC-effective design of bridges. It is applied to an actual bridge design project in order to demonstrate its effectiveness and applicability.

  • PDF

A Study on the Evaluation of the Efficiency in the Costs of the Remodeling (개보수 대상 건물의 비용 측면에서의 효율성 평가에 관한 연구 - 바닥 마감재를 중심으로 -)

  • Kim, Sang-Yong;Jung, Byung-Woo;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.129-134
    • /
    • 2003
  • The purpose of this study is to evaluate efficiency by the Life Cycle Cost(LCC) analysis of floor covering materials for remodeling. This study has been performed as a case study. The LCC analysis is a technique which takes account into both initial-future costs and benefits of an investment over some period of time. LCC is important in commercial decision making because it provides improved assessment of the living-term cost effectiveness of construction projects as well as alternative economic methods that focus on initial costs. For LCC analysis and comparison, the present value technique is used. The results of this study are summarized as follows; (1) A LCC analysis model of floor covering materials is suggested through a case study (2) As a result of LCC case study, the type of sheet is analysed more economical than that of tile in floor covering materials.

Prediction of UDPSC Bridge's Maintanence Cost based on Life Cycle Cost Analysis (LCC 분석에 기초한 UDPSC 교량의 유지관리비 예측에 관한 연구)

  • Shim, Bo-Hyun;Lee, Heung-Chol;Woo, Sung-Kwon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.638-641
    • /
    • 2006
  • In this paper, A calculating cost method of maintenance and repair for bridge which is built up by new construction technique named Up-Down Precast Concrete(UDPSC). After 2000, 109 Bridges which are using UDPSC technique have been built up, 37 bridges's construction work are processing, and 194 designs are presented for construction. Because this technology has developed recently, there are few field data for analyzing the maintenance and repair cost. Therefore, the maintenance and repair cost is computed using Construction and Transportation Ministry's guide line for computation and former research's data.

  • PDF

Development of Long-Life Asphalt Pavements Method Using High Modulus Asphalt Mixes (고강성 기층재를 적용한 장수명 아스팔트포장 공법 개발)

  • Lee Jung-Hun;Lee Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.49-61
    • /
    • 2006
  • This study suggests long-life asphalt pavement method which can save maintenance cost by increasing the design and performance period of pavements. The high modulus asphalt binder developed and then various physical tests are performed. Laboratory performance tests and accelerated pavement test are conducted for the high modulus and conventional mixtures. The test results show that dynamic modulus values of high modulus mixtures are higher than those of the conventional mixtures, The high modulus mixtures yield better fatigue, rutting and moisture damage performance than conventional mixtures. Structural analysis is performed and a database is built up for long life asphalt pavement design. Pavement response model is developed through a multiple regression analysis program, SPSS using the database. A design software for the long life pavements is developed based on the pavement response model and laboratory and field performance tests results. In addition, optimum pavement sections and materials are suggested. The suggested AC thickness of long life asphalt pavement is 29cm. A Life cycle cost analysis(LCCA) is conducted to check the economical efficiency of the long life pavement section. The LCCA result shows that initial construction costs of long life and conventional pavements are almost equal, but long life pavement is more profitable in terms of the LCCA.

  • PDF

QR Code-Based Strength Labeling Techniques for Concrete Life-Cycle Quality Maintenance (콘크리트 생애주기 품질관리를 위한 QR 코드 기반 강도 라벨링 기술)

  • Kim, Tae-Heon;Kim, Dong-Jin;Park, Seung-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.603-608
    • /
    • 2011
  • In recent years, numerous mega-sized and complex civil infrastructures are being constructed all over the world. Therefore, more precise construction and maintenance technologies are required for these complicated construction projects. Especially, exact strength measurement and curing process monitoring of the concrete structures are very crucial to confirm the safety and effectiveness of these complicated structures. In this paper, a new Quick Response (QR) code-based concrete strength labeling technique using embedded self-sensing monitoring system is introduced. It is important to note that the QR code-based concrete labeling technique enables easy access of the databases related to the concrete strength at anytime, anywhere, and any smart PC devices. Finally, by integrating the proposed QR code-based concrete labeling with the concrete strength databases already prepared at a designated web-server, a feasibility of the current system is investigated for a next generation concrete life-cycle quality maintenance.

Correlation Effect of Maintenances on Probabilistic Service Life Management (확률론적 구조물 수명관리의 유지보수 상관관계 영향 평가)

  • Kim, Sunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • The assessment and prediction of service life of a structure are usually under uncertainty so that rational probabilistic concepts and methods have to be applied. Based on these rational assessment and prediction, optimum maintenance strategies to minimize the life-cycle cost and/or maximize the structural safety can be established. The service life assessment and prediction considering maintenance actions generally includes effects of maintenance types and times of the structural components on the service life extensions of structural system. Existing researches on the service life management have revealed the appropriate system modeling considering the correlation among the components is required for system reliability analysis and probabilistic service life estimation. However, the study on correlation among the maintenance actions is still required. This paper deals with such a study for more effective and efficient service life management. In this paper, both the preventive and essential maintenances are considered for the extended service life estimation and management.

A Study of LCCA and LCA to Evaluate Feasibility for Introducing Smart Quiescent Power Control System into Office Building (LCCA 및 LCA 분석을 이용한 오피스 빌딩에 지능형 대기전력 제어시스템 도입의 타당성 분석에 관한 연구)

  • Quan, Junlong;Lee, Seok-Jung;Choi, Hye-Mi;Kim, Kyung-Hwan;Kim, Ju-Hyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.141-149
    • /
    • 2016
  • Recently, in an attempt to overcome the defects of quiescent power shutdown system, smart quiescent power control system has been developed. However, due to its higher investment costs, feasibility evaluation must be conducted. While LCCA (Life Cycle Cost Analysis) model is useful to estimate net savings of alternatives that differ with respect to initial costs and operating costs, the environmental burdens are not considered. On the contrary, LCA (Life Cycle Assessment) model is suitable to assess environmental impacts associated with the stages of a product's life but it does not consider costs. In this study, a comprehensive analysis on the economic and environmental impacts of smart quiescent power control system is conducted by using LCCA and LCA model. In addition, sensitivity analysis is carried out to quantify accuracy of estimates.