• Title/Summary/Keyword: 생애함수

Search Result 45, Processing Time 0.019 seconds

An exploration of the relationship between crime/victim characteristics and the victim's criminal damages: Variable selection based on random forest algorithm (범죄 및 피해자 특성과 범죄피해 내용의 관계 탐색: 랜덤포레스트 알고리즘에 기초한 변인선택)

  • Han, Yuhwa;Lee, Wooyeol
    • Korean Journal of Forensic Psychology
    • /
    • v.13 no.2
    • /
    • pp.121-145
    • /
    • 2022
  • The current study applied the random forest algorithm to Korean crime victim survey data collected biennially between 2010 and 2018 to explore the relationship between crime/victim characteristics and the victim's criminal damages. A total of 3,080 cases including gender, age (life cycle stage), type of crime, perpetrator acquisition, repeated victimization, psychological damage (depression, isolation, extreme fear, somatic symptoms, interpersonal problems, moving out to avoid people, suicidal impulses, suicide attempts), and emotional changes after victimization (changes in self-protection confidence, self-esteem, confidence in others, confidence in legal institutions, and respect for Korean legal system/law) were analyzed. Considering the features of data that are difficult to apply traditional statistical techniques, this study implemented random forest algorithms to predict crime and victim characteristics using the victim's criminal damages (psychological damage and emotional change) and selected good predictors using VSURF function in VSURF package for R. As a result of the analysis, it was confirmed that the relationship between the type of crime and depression, extreme fear, somatic symptoms, and interpersonal problems, between perpetrator acquisition and somatic symptoms and interpersonal problems, and between repeated victimization and changes in respect for Korean legal system/law. Gender and life cycle stage (youth/adult/elderly) were found to be related to extreme fear and changes in self-protection confidence, respectively. However, more empirical evidence should be aggregated to explain the results as meaningful. The results of this study suggest that it is necessary to enhance the experts' knowledge and educate them on cases about the relationship between crime/victim characteristics and criminal damage. Strengthening their interview strategy and knowledge about law/rules were also needed to increase the effectiveness of the Korean victim assessment system.

Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete (고로슬래그가 콘크리트의 전 과정 환경영향에 미치는 효과)

  • Yang, Keun-Hyeok;Seo, Eun-A;Jung, Yeon-Back;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • To quantitatively evaluate the influence of ground granulated blast-furnace slag (GGBS) as a supplementary cementitious material on the life-cycle environmental impact of concrete, a comprehensive database including 3395 laboratory mixes and 1263 plant mixes was analyzed. The life-cycle assesment studied for the environmental impact of concrete can be summarized as follows: 1) the system boundary considered was from cradle to pre-construction; 2) Korea life-cycle inventories were primarily used to assess the environmental loads in each phase of materials, transportation and production of concrete; and 3) the environmental loads were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was significantly governed by the unit content of ordinary portland cement (OPC) and decreased with the increase of the replacement level of GGBS. As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and replacement level of GGBS.

A Study on the Design Value Analysis Methodology for Bridge Structure Using Reliability Analysis (신뢰성 해석을 이용한 교량구조물의 설계VA기법 연구)

  • Kim, Seong-Il;Lee, Kwang-Mo;Choi, Suk-Won;Jung, Jun-Hwa;Kim, Seong-Il
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.114-125
    • /
    • 2009
  • In this study, a design value analysis technique that considered stochastic LCC and stochastic performance evaluation was proposed, and by introducing the concept of reliability analysis, a decision making that secured reliability was supported. The results of this study, which was carried out according to the above objectives and methods, are summarized as follows: 1) The design value analysis procedures and value state function, improved in order to carry out a reliable analysis when evaluating alternate proposals that were extracted after the function definition was complete, were formalized, and in order to secure consistency and efficiency for value evaluation procedures, an evaluation index scheme was proposed; 2) Database collection and analysis were done for a bridge's LCC analysis. As for the collection scope of data, literature of previous research done on a bridge's LCC analysis was used as the basis for analysis, and for securing reliability regarding analysis results and dealing with uncertainty of collected data, the MCS technique was applied; 3) Weights and evaluation ranks for performance evaluation of each of the alternate proposals, as well as LCC analysis model, analysis period, discount rate, user expense, safety inspection and safety diagnosis expense conditions for LCC analysis were proposed. Lastly, a feasibility study was done and conclusion was made about "OO grand bridge and connecting road construction work execution design" project centered on value analysis execution case.

Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization (다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가)

  • Lee, Dohyun;Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.332-340
    • /
    • 2017
  • This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel-based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum $CO_2$ emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce $CO_2$ emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES-based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of $CO_2$ ($LCE_{CO2}$) can be reduced up to 470 g$CO_2$/kWh from 490 g$CO_2$/kWh of the conventional systems.

Effects of Temperature on the Development and Reproduction of Ostrinia scapulalis (Lepidoptera: Crambidae) (콩줄기명나방(Ostrinia scapulalis) (나비목: 포충나방과)의 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.577-590
    • /
    • 2022
  • Ostrinia scapulalis is one of important pests in leguminous crops, especially red bean. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of O. scapulalis at eleven constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, and 36℃. Eggs and larvae successfully developed next life stage at most temperature subjected except 7, 10 and 13℃. The developmental period of egg, larva and pupa decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of O. scapulalis were estimated by linear regression as 13.5℃ and 384.5DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 19.4℃ and 39.8℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of O. scapulalis was 20.4℃. Adults produced viable eggs at the temperature range between 16℃ and 34℃, and showed a maximum number, ca. 416 offsprings, at 25℃. Adult models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed, using the temperature-dependent adult traits. Temperature-dependent development models and adult oviposition models will be useful components to understand the population dynamics of O. scapulalis and will be expected using a basic data for establishing the strategy of integrated pest management in leguminous crops.