Annual Conference on Human and Language Technology
/
2023.10a
/
pp.707-710
/
2023
관계추출은 문장 내 두 개체 간의 의미적 관계를 추론하는 자연어분석 태스크이다. 딥러닝의 발전과 더불어 관계추출은 BERT 계열의 이해형 언어모델을 이용하였다. 그러나, ChatGPT의 혁신적인 등장과 함께, GPT계열의 생성형 언어모델에 대한 연구가 활발해졌다. 본 논문에서는 소규모의 생성형 언어모델(Kebyt5)을 이용하여 관계추출 성능개선을 위한 프롬프트 구성 및 생각의 사슬(CoT) 학습 방법을 제안한다. 실험결과 Kebyt5-large 모델에서 CoT 학습을 수행하였을 경우, Klue-RoBERTa-base 모델보다 3.05%의 성능개선이 있었다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.374-378
/
2022
대화형 관계 추출의 목표는 주어진 대화에서 두 개체 간의 관계를 식별하는 것이다. 대화 중에 화자는 개체 및 관계와 관련이 있는 단서인 트리거를 통해 특정 개체 간 관계를 식별하는 것에 힌트를 얻을 수 있다. 그러나 데이터에 대해 항상 트리거 정보가 존재하는 것이 아니므로 트리거를 활용해 성능을 향상시키는 것은 어렵다. 본 논문은 이 문제점을 해소하기 위해 대화, 개체, 관계 중심으로 트리거 생성 모델을 학습하고, 이를 통해 생성된 트리거를 대화형 관계 추출에 학습하여 관계 식별에 효과적인 성능 향상을 보이는 접근법을 제안한다. 제안하는 접근법은 대화형 관계 추출 태스크에서 기존 성능과 비교한 결과 Dev, Test에서 각각 F1 19.74%p, F1 15.53%p 의 성능 향상을 보였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.133-138
/
2021
최근 다양한 분야에서 자동 고객 응대 시스템을 도입하고 있으며 이에 따른 대화형 질의응답 시스템 연구의 필요성이 증가하고 있다. 본 논문에서는 새로운 도메인의 대화형 질의응답 시스템 구축에 필요한 말뭉치를 자동으로 생성하는 대화형 질의-응답 생성 시스템을 소개한다. 또한 이전 대화 내용을 고려하여 문서로부터 사용자의 다음 질문 대상이 될만한 응답 후보를 추출하는 맥락 관련 응답 추출 과제와 이에 대한 성능 평가 지표인 Sequential F1 점수를 함께 제안한다. 대화형 질의응답 말뭉치인 CoQA에 대해 응답 후보 추출 실험을 진행한 결과 기존의 응답 추출 모델보다 우리의 맥락 관련 응답 추출 모델이 Sequential F1 점수에서 31.1 높은 성능을 보였다. 또한 맥락 관련 응답 추출 모듈과 기존에 연구된 대화형 질의 생성 모듈을 결합하여 개발한 대화형 질의-응답 생성 시스템을 통해 374,260 쌍의 질의-응답으로 구성된 대화형 질의응답 말뭉치를 구축하였다.
This paper proposes avatar face generation system that uses shading mechanism and facial features extraction method of facial recognition. Proposed system generates avatar face similar to human face automatically using facial features that extracted from a photo. And proposed system is an approach which compose shade and facial features. Thus, it has advantages that can make more realistic avatar face similar to human face. This paper proposes new eye localization method, facial features extraction method, classification method for minimizing retrieval time, image retrieval method by similarity measure, and realistic avatar face generation method by mapping facial features with shaded face pane.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.147-151
/
2016
본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.
본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.
This paper proposes caricature generation system that uses shading mechanism that extracts textural features of face. Using this method, we can get more realistic caricature. Since this system If vector-based, the generated character's face has no size limit and constraint. so it is available to transform the shape freely and to apply various facial expressions to 2D face. Moreover, owing to the vector file's advantage, It can be used in mobile environment as small file size This paper presents methods that generate vector-based face, create shade and synthesize the shade with the vector face.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.571-573
/
2003
본 논문에서는 카메라 내장형 휴대폰을 이용한 아바타 영상 생성 시스템을 제안하고자 한다. 먼저 정면에서 찍은 상반신 컬러영상의 배경제거를 위하여 흑백영상으로 변환한 후, sobel edge 방법을 적용하여 수축 및 확장처리를 하였다. 이후, 배경이 제거된 영상의 얼굴을 구성하는 각 부분(머리카락, 얼굴형태, 눈, 코, 잎, 귀)을 추출하는 과정을 거친다. 제일먼저 filling 방법을 적용하여 머리카락 영역을 추출한 후, 얼굴영역은 skin-color 모델을 적용하여 추출하였다. 얼굴의 형태는 얼굴의 상하좌우의 끝점을 이용한 계란형을 기본으로 하였으며, 눈, 코. 잎. 귀 부분은 얼굴의 형태정보를 이용하여, 각 부분들의 위치 정보를 구하였다. 이 정보를 이용하여 이미 만들어 놓은 샘플 아바타와 가장 유사한 샘플을 선택한 후, 각 부분들을 조립함으로서 나와 닮은 아바타 영상을 만든다.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.585-588
/
2002
본 논문에서는 개체형 인식이 된 일반 문서에서 정보 추출을 하기 위하여 이벤트 템플릿 구조를 사용하는 방법을 제안한다. 제한된 도메인 지식을 주로 사용하는 기존의 정보 추출 방법과 달리 predicate-argument 구조를 갖는 이벤트 템플릿은 일반적인 지식을 주로 사용하여 정보 추출을 한다. 이벤트 템플릿을 추출하기 위해서는 형태소 분석 결과 용언의 하위범주 정보를 이용하고 이벤트 템플릿의 논항 구조를 이용하여 필요시 이벤트 템플릿을 통합한다. 문서에서 생성된 일반적인 이벤트 템플릿은 정보수용자의 요구에 맞는 도메인 지식을 사용하여 최종적인 결과를 생성한다. 이벤트 템플릿을 사용하는 정보 추출 실험 결과는 제한된 도메인 정보를 사용하는 시스템에 비해 정확율은 떨어지지만 기존 정보 추출시스템의 문제인 이식성을 높일 수 있다.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1307-1312
/
2023
In this paper, we propose a hybrid camera system that combines cameras with different focal lengths and LiDAR (Light Detection and Ranging) sensors to address the core components of autonomous driving perception technology, which include object recognition and distance measurement. We extract objects within the scene and generate precise location and distance information for these objects using the proposed hybrid camera system. Initially, we employ the YOLO7 algorithm, widely utilized in the field of autonomous driving due to its advantages of fast computation, high accuracy, and real-time processing, for object recognition within the scene. Subsequently, we use multi-focal cameras to create depth maps to generate object positions and distance information. To enhance distance accuracy, we integrate the 3D distance information obtained from LiDAR sensors with the generated depth maps. In this paper, we introduce not only an autonomous vehicle platform capable of more accurately perceiving its surroundings during operation based on the proposed hybrid camera system, but also provide precise 3D spatial location and distance information. We anticipate that this will improve the safety and efficiency of autonomous vehicles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.