• 제목/요약/키워드: 생성형 적대 신경망

검색결과 6건 처리시간 0.024초

심층 적대적 생성 신경망의 오류 재학습을 이용한 얼굴 영상 생성 모델 (Photo-realistic Face Image Generation by DCGAN with error relearning)

  • 하용욱;홍동진;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.617-619
    • /
    • 2018
  • 본 논문에서는 계층형 적대적 생성 신경망(GAN: Generative Adversarial Network)에서 오류 판별자를 추가하여 영상 생성 성능을 개선하는 방안을 제안한다. 제안하는 영상 생성 방법에서는 영상 생성자가 빈번히 발생시키는 오류에 대해 별도로 학습을 수행하는 판별자를 모델에 추가하여 계층형 적대적 생성 신경망을 구성하였다. 본 논문에서 제안한 모델을 이용하여 생성한 영상의 효용성을 검증하는 방법으로는 Inception Score를 사용하였다. 학습 데이터로 celebA의 유명인 얼굴 이미지 중 정면 이미지 155,680장을 이용하였다. 본 논문의 모델로 생성한 10,000장의 얼굴 이미지를 Inception Score로 평가한 결과, 평균 1.742p의 성능을 나타내어 기존의 영상 생성 방법보다 높은 점수를 얻을 수 있었으며, 효용성을 확인할 수 있었다.

  • PDF

순환 적대적 생성 신경망을 이용한 안면 교체를 위한 새로운 이미지 처리 기법 (A New Image Processing Scheme For Face Swapping Using CycleGAN)

  • 반태원
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1305-1311
    • /
    • 2022
  • 최근 모바일 단말기 및 개인형 컴퓨터의 비약적인 발전과 신경망 기술의 등장으로 영상을 활용한 실시간 안면 교체가 가능해졌다. 특히, 순환 적대적 생성 신경망은 상호 연관성이 없는 이미지 데이터를 활용한 안면 교체가 가능하게 만들었다. 본 논문에서는 적은 학습 데이터와 시간으로 안면 교체의 품질을 높일 수 있는 입력 데이터 처리 기법을 제안한다. 제안 방식은 사전에 학습된 신경망을 통해서 추출된 안면의 특이점 정보와 안면의 구조와 표정에 영향을 미치는 주요 이미지 정보를 결합함으로써 안면 표정과 구조를 보존하면서 이미지 품질을 향상시킬 수 있다. 인공지능 기반의 무참조 품질 메트릭 중의 하나인 blind/referenceless image spatial quality evaluator (BRISQUE) 점수를 활용하여 제안 방식의 성능을 정량적으로 분석하고 기존 방식과 비교한다. 성능 분석 결과에 따르면 제안 방식은 기존 방식 대비 약 4.6%~14.6% 개선된 BRISQUE 점수를 나타내었다.

딥러닝을 이용한 광학적 프린지 패턴의 생성 (Generation of optical fringe patterns using deep learning)

  • 강지원;김동욱;서영호
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1588-1594
    • /
    • 2020
  • 본 논문에서는 심층신경망(deep neural network, DNN)을 이용하여 디지털 홀로그램을 생성하는 신경망의 학습을 위한 데이터 균형 조정 방법에 대하여 논의 한다. 심층신경망은 딥러닝(deep learning, DL) 기술에 기반을 두고 있고, 생성형 적대적 네트워크(generative adversarial network, GAN)계열을 이용한다. 심층 신경망을 통하여 생성 하고자하는 홀로그램의 기본 단위인 프린지 패턴은 홀로그램 평면과 객체의 위치에 따라 데이터의 형태가 매우 다르다. 하지만 데이터의 분류 기준이 명확하지 않기 때문에 학습 데이터의 불균형이 생길 수 있다. 학습 데이터의 불균형은 곧 학습의 불안정 요소로 작용한다. 따라서 분류 기준이 명확하지 않은 데이터를 분류하고 균형을 맞추는 방법을 제시한다. 그리고 이를 통하여 학습이 안정화됨을 보인다.

모드 붕괴를 완화하기 위한 다중 GANs 훈련 시스템 (Mitigating Mode Collapse using Multiple GANs Training System)

  • 심주용;최진성;김종국
    • 정보처리학회 논문지
    • /
    • 제13권10호
    • /
    • pp.497-504
    • /
    • 2024
  • 생성형 적대 신경망(GANs)은 보통 생성자와 판별자 사이의 두 플레이어 게임으로 설명된다. 여기서 생성자는 실제에 가까운 데이터를 생성하는 것을 목표로 하고, 판별자는 실제 데이터와 생성된 데이터를 구별하려고 한다. 하지만 이 방식은 종종 생성자가 데이터를 제한적으로 생성하여 데이터 분포의 다양성을 제대로 포착하지 못하는 모드 붕괴(mode collapse)로 이어질 수 있다, 이 논문에서는 이러한 모드 붕괴 문제를 완화하기 위한 새로운 훈련 시스템을 제안한다. 구체적으로, 기존의 이중 플레이어 게임을 다중 플레이어 게임으로 확장하고, 여러 GANs를 효과적으로 훈련시키기 위해 동료 평가(peer-evaluation) 방법을 제안한다. 동료 평가 과정에서는 각 GAN이 생성한 샘플들을 다른 플레이어들이 평가한다. 이는 외부 피드백을 제공하여 GAN이 모드 붕괴를 인식할 수 있는 추가적인 기준이 된다. 이러한 동료 평가 방법을 적용한 협력적이면서도 경쟁적인 다중 플레이어 게임 방식의 훈련은 생성자들이 데이터 분포의 더 넓은 범위를 탐색하고 포착하도록 돕는다. 이 논문에서는 여러 GANs를 효과적으로 훈련시키기 위한 알고리즘을 자세히 소개하고, 실험을 통해 그 성능을 검증한다.

적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템 (Non-pneumatic Tire Design System based on Generative Adversarial Networks)

  • 성주용;이현준;이성철
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.34-46
    • /
    • 2023
  • 자동차 타이어의 휠과 트레드 사이에 탄성중합체 또는 다각형의 스포크를 채우는 방식으로 제작하는 비공기압 타이어는 자동차 관련 학계 및 항공우주 업계의 중요한 연구 주제가 되고 있다. 본 연구에서는 생성형 적대 신경망을 기반으로 비공기압 타이어 디자인을 생성하는 시스템 개발했다. 특히 비공기압 타이어의 종류와 사용 환경, 제작 방식, 공기압 타이어와의 차이점 그리고 스포크 디자인에 따른 하중 전달의 변화 등 디자인에 영향을 미칠만한 변수들에 대한 조사를 실시했다. 이 연구는 OpenCV를 통해 다양한 스포크 형태의 이미지를 만들고, projected GANs에 학습시켜 비공기압 타이어 디자인에 사용될 스포크를 생성했다. 디자인된 비공기압 타이어는 사용 가능 및 불가능으로 레이블링하고, 이를 Vision Transformer 이미지 분류 AI 모델에 학습시켜 분류하도록 하였다. 최종적으로 분류 모델의 평가를 통해 0에 가까운 loss의 수렴, 99%의 정확도를 확인했다. 차후 도형 및 스포크 이미지와 알고리즘을 이용한 디자인이 아닌, 완전 자동화 시스템의 개발과 더 나아가 3D의 물리적 해석 없이 사용 가능한 디자인을 생성하는 것을 목표로 한다.

  • PDF

적대적 생성 신경망을 활용한 비지도 학습 기반의 대기 자료 이상 탐지 알고리즘 연구 (A Study on Atmospheric Data Anomaly Detection Algorithm based on Unsupervised Learning Using Adversarial Generative Neural Network)

  • 양호준;이선우;이문형;김종구;최정무;신유미;이석채;권장우;박지훈;정동희;신혜정
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.260-269
    • /
    • 2022
  • 본 논문에서는 기존에 전문가에 의해서 이루어지던 국가 대기오염 측정망 데이터들의 이상 탐지 작업을 인공지능을 통해 자동화하고자 심층 신경망을 이용한 이상 탐지 모델을 제안하였다. 환경과학원에서 제공받은 기상자료 데이터의 결측치 및 이상치를 분석하여 학습데이터를 생성하였으며 비지도 학습 방식의 BeatGAN 모델에 기반하여 커널 구조 변경과 합성곱 필터층 및 전치 합성곱 필터층의 추가를 통해 새로운 모델을 제안하여 이상 탐지 성능을 높이고자 하였다. 또한 제안하는 모델의 생성적 특징을 활용하여 새로운 데이터를 생성하고 이를 학습에 사용하는 재학습 알고리즘을 구현 및 적용하여 기존 BeatGAN 모델뿐 아니라 다른 비지도 학습 모델인 Iforest, One Class SVM과 비교하였을 때 제안모델의 성능이 가장 높았음을 확인할 수 있었다. 본 연구를 통해 실제 산업현장에서 센서의 이상, 점검 등의 여러 요인으로 인해 학습 데이터가 부족한 상황에서 추가적인 비용없이 과적합을 피하며 제안하는 모델의 이상탐지 성능을 올릴 수 있는 방법을 제시할 수 있었다.