• Title/Summary/Keyword: 생성형 적대 신경망

Search Result 6, Processing Time 0.019 seconds

Photo-realistic Face Image Generation by DCGAN with error relearning (심층 적대적 생성 신경망의 오류 재학습을 이용한 얼굴 영상 생성 모델)

  • Ha, Yong-Wook;Hong, Dong-jin;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.617-619
    • /
    • 2018
  • In this paper, We suggest a face image generating GAN model which is improved by an additive discriminator. This discriminator is trained to be specialized in preventing frequent mistake of generator. To verify the model suggested, we used $^*Inception$ score. We used 155,680 images of $^*celebA$ which is frontal face. We earned average 1.742p at Inception score and it is much better score compare to previous model.

  • PDF

A New Image Processing Scheme For Face Swapping Using CycleGAN (순환 적대적 생성 신경망을 이용한 안면 교체를 위한 새로운 이미지 처리 기법)

  • Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1305-1311
    • /
    • 2022
  • With the recent rapid development of mobile terminals and personal computers and the advent of neural network technology, real-time face swapping using images has become possible. In particular, the cycle generative adversarial network made it possible to replace faces using uncorrelated image data. In this paper, we propose an input data processing scheme that can improve the quality of face swapping with less training data and time. The proposed scheme can improve the image quality while preserving facial structure and expression information by combining facial landmarks extracted through a pre-trained neural network with major information that affects the structure and expression of the face. Using the blind/referenceless image spatial quality evaluator (BRISQUE) score, which is one of the AI-based non-reference quality metrics, we quantitatively analyze the performance of the proposed scheme and compare it to the conventional schemes. According to the numerical results, the proposed scheme obtained BRISQUE scores improved by about 4.6% to 14.6%, compared to the conventional schemes.

Generation of optical fringe patterns using deep learning (딥러닝을 이용한 광학적 프린지 패턴의 생성)

  • Kang, Ji-Won;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1588-1594
    • /
    • 2020
  • In this paper, we discuss a data balancing method for learning a neural network that generates digital holograms using a deep neural network (DNN). Deep neural networks are based on deep learning (DL) technology and use a generative adversarial network (GAN) series. The fringe pattern, which is the basic unit of a hologram to be created through a deep neural network, has very different data types depending on the hologram plane and the position of the object. However, because the criteria for classifying the data are not clear, an imbalance in the training data may occur. The imbalance of learning data acts as a factor of instability in learning. Therefore, it presents a method for classifying and balancing data for which the classification criteria are not clear. And it shows that learning is stabilized through this.

Mitigating Mode Collapse using Multiple GANs Training System (모드 붕괴를 완화하기 위한 다중 GANs 훈련 시스템)

  • Joo Yong Shim;Jean Seong Bjorn Choe;Jong-Kook Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.497-504
    • /
    • 2024
  • Generative Adversarial Networks (GANs) are typically described as a two-player game between a generator and a discriminator, where the generator aims to produce realistic data, and the discriminator tries to distinguish between real and generated data. However, this setup often leads to mode collapse, where the generator produces limited variations in the data, failing to capture the full range of the target data distribution. This paper proposes a new training system to mitigate the mode collapse problem. Specifically, it extends the traditional two-player game of GANs into a multi-player game and introduces a peer-evaluation method to effectively train multiple GANs. In the peer-evaluation process, the generated samples from each GANs are evaluated by the other players. This provides external feedback, serving as an additional standard that helps GANs recognize mode failure. This cooperative yet competitive training method encourages the generators to explore and capture a broader range of the data distribution, mitigating mode collapse problem. This paper explains the detailed algorithm for peer-evaluation based multi-GANs training and validates the performance through experiments.

Non-pneumatic Tire Design System based on Generative Adversarial Networks (적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템)

  • JuYong Seong;Hyunjun Lee;Sungchul Lee
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.34-46
    • /
    • 2023
  • The design of non-pneumatic tires, which are created by filling the space between the wheel and the tread with elastomeric compounds or polygonal spokes, has become an important research topic in the automotive and aerospace industries. In this study, a system was designed for the design of non-pneumatic tires through the implementation of a generative adversarial network. We specifically examined factors that could impact the design, including the type of non-pneumatic tire, its intended usage environment, manufacturing techniques, distinctions from pneumatic tires, and how spoke design affects load distribution. Using OpenCV, various shapes and spoke configurations were generated as images, and a GAN model was trained on the projected GANs to generate shapes and spokes for non-pneumatic tire designs. The designed non-pneumatic tires were labeled as available or not, and a Vision Transformer image classification AI model was trained on these labels for classification purposes. Evaluation of the classification model show convergence to a near-zero loss and a 99% accuracy rate confirming the generation of non-pneumatic tire designs.

  • PDF

A Study on Atmospheric Data Anomaly Detection Algorithm based on Unsupervised Learning Using Adversarial Generative Neural Network (적대적 생성 신경망을 활용한 비지도 학습 기반의 대기 자료 이상 탐지 알고리즘 연구)

  • Yang, Ho-Jun;Lee, Seon-Woo;Lee, Mun-Hyung;Kim, Jong-Gu;Choi, Jung-Mu;Shin, Yu-mi;Lee, Seok-Chae;Kwon, Jang-Woo;Park, Ji-Hoon;Jung, Dong-Hee;Shin, Hye-Jung
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.260-269
    • /
    • 2022
  • In this paper, We propose an anomaly detection model using deep neural network to automate the identification of outliers of the national air pollution measurement network data that is previously performed by experts. We generated training data by analyzing missing values and outliers of weather data provided by the Institute of Environmental Research and based on the BeatGAN model of the unsupervised learning method, we propose a new model by changing the kernel structure, adding the convolutional filter layer and the transposed convolutional filter layer to improve anomaly detection performance. In addition, by utilizing the generative features of the proposed model to implement and apply a retraining algorithm that generates new data and uses it for training, it was confirmed that the proposed model had the highest performance compared to the original BeatGAN models and other unsupervised learning model like Iforest and One Class SVM. Through this study, it was possible to suggest a method to improve the anomaly detection performance of proposed model while avoiding overfitting without additional cost in situations where training data are insufficient due to various factors such as sensor abnormalities and inspections in actual industrial sites.