• Title/Summary/Keyword: 생성형 모델

Search Result 811, Processing Time 0.032 seconds

Engineering a deep-generative model for lyric writing based upon a style transfer of song writers (심층생성모델 기반 가수 스타일 전이형 작사 모델 구현)

  • Hong, Hye-Jin;Kim, So-Hyeon;Lee, Jee Hang
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.741-744
    • /
    • 2021
  • 본 논문은 사전 학습된 심층생성모델을 기반으로 가수 별 가사의 특성을 반영하여 새로운 가사를 생성하는 모델을 소개한다. 베이스 모델로 한국어 사전 학습 모델 KoGPT-2 를 사용하였으며, 총 가수 10 명의 노래 823 곡을 수집하여 미세조정 기법을 바탕으로 학습하였다. 특히, 가수 별로 구분한 가사를 학습 데이터로 구축하여, 가수 별로 독특하게 나타나는 가사 스타일이 전이되도록 하였다. 가수의 이름과 시작 단어를 입력으로 주고 작사를 수행한 실험 결과, (i) 가수 별로 생성되는 가사의 어휘와 스타일이 그 가수의 기존 곡들의 가사와 유사함을 확인하였고, (ii) 작사 결과 가수 별 차이를 확인하였다. 추후 설문을 통해, 개별 가수들의 가사와 생성된 가사의 어휘와 스타일 유사성을 확인하고, 가수 별 차이 또한 확인하고자 한다.

UI/UX for Generative AI (생성형 AI 용도의 UI/UX)

  • Tae-Seok Kim;Anh H. Vo;Marvin John Ignacio;Khuong G. T. Diep;Yong-Guk Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.687-690
    • /
    • 2023
  • 본 논문은 다양한 종류의 생성형 AI 용도의 UI/UX 중 텍스트 기반 UI/UX, 이미지 기반 UI/UX, 오디오 기반 UI/UX, 그리고 Multi-modal 을 기반으로 둔 UI/UX 와 같은 다양한 유형의 UI/UX 를 살펴보고 최신 기술을 활용한 미래전망에 대해 알아 보도록 한다. 현재 생성 모델은 다양한 산업 분야에서 광범위하고 다양한 응용 프로그램으로 사용되고 있으며, 최근 연구자와 실무자들로부터 상당한 관심을 받고 있다.생성형 AI 용도의 UI/UX 를 사용하면 생활에 편리해지며 시간과 돈이 매우 절약이 된다. 특히 사용자들이 편안하게 사용할 수 있는 생성형 AI 의 UI/UX 대한 연구방향에 대해 알아 보도록 한다.

Domain-robust End-to-end Task-oriented Dialogue Model based on Dialogue Data Augmentation (대화 데이터 증강에 기반한 도메인에 강건한 종단형 목적지향 대화모델)

  • Kiyoung Lee;Ohwoog Kwon;Younggil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.531-534
    • /
    • 2022
  • 신경망 기반 심층학습 기술은 대화처리 분야에서 대폭적인 성능 개선을 가져왔다. 특히 GPT-2와 같은 대규모 사전학습 언어모델을 백본 네트워크로 하고 특정 도메인 타스크 대화 데이터에 대해서 미세조정 방식으로 생성되는 종단형 대화모델의 경우, 해당 도메인 타스크에 대해서 높은 성능을 내고 있다. 하지만 이런 연구들은 대부분 하나의 도메인에 대해서만 초점을 맞출 뿐 싱글 모델로 두 개 이상의 도메인을 고려하고 있지는 않다. 특히 순차적인 미세 조정은 이전에 학습된 도메인에 대해서는 catastrophic forgetting 문제를 발생시킴으로써 해당 도메인 타스크에 대한 성능 하락이 불가피하다. 본 논문에서는 이러한 문제를 해결하기 위하여 MultiWoz 목적지향 대화 데이터에 오픈 도메인 칫챗 대화턴을 유사도에 기반하여 추가하는 데이터 증강 방식을 통해 사용자 입력 및 문맥에 따라 MultiWoz 목적지향 대화와 오픈 도메인 칫챗 대화를 함께 생성할 수 있도록 하였다. 또한 목적지향 대화와 오픈 도메인 칫챗 대화가 혼합된 대화에서의 시스템 응답 생성 성능을 평가하기 위하여 오픈 도메인 칫챗 대화턴을 수작업으로 추가한 확장된 MultiWoz 평가셋을 구축하였다.

  • PDF

Reference-based Utterance Generation Model using Multi-turn Dialogue (멀티턴 대화를 활용한 레퍼런스 기반의 발화 생성 모델)

  • Sangmin Park;Yuri Son;Bitna Keum;Hongjin Kim;Harksoo Kim;Jaieun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.88-91
    • /
    • 2022
  • 디지털 휴먼, 민원 상담, ARS 등 칫챗의 활용과 수요가 증가함에 따라 칫챗의 성능 향상을 위한 다양한 연구가 진행되고 있다. 특히, 오토 인코더(Auto-encoder) 기반의 생성 모델(Generative Model)은 높은 성능을 보이며 지속적인 연구가 이루어지고 있으나, 이전 대화들에 대한 충분한 문맥 정보의 반영이 어렵고 문법적으로 부적절한 답변을 생성하는 문제가 있다. 이를 개선하기 위해 검색 기반의 생성 모델과 관련된 연구가 진행되고 있으나, 현재 시점의 문장이 유사해도 이전 문장들에 따라 의도와 답변이 달라지는 멀티턴 대화 특징을 반영하여 대화를 검색하는 연구가 부족하다. 본 논문에서는 이와 같은 멀티턴 대화의 특징이 고려된 검색 방법을 제안하고 검색된 레퍼런스(준정답 문장)를 멀티턴 대화와 함께 생성 모델의 입력으로 활용하여 학습시키는 방안을 제안한다. 제안 방안으로 학습된 발화 생성 모델은 기존 모델과 비교 평가를 수행하며 Rouge-1 스코어에서 13.11점, Rouge-2 스코어에서 10.09점 Rouge-L 스코어에서 13.2점 향상된 성능을 보였고 이를 통해 제안 방안의 우수성을 입증하였다.

  • PDF

Study Service Ontology Design Scheme Using UML and OCL (UML 및 OCL을 이용한 서비스 온톨로지 설계 방안에 관한 연구)

  • Lee Yun-Su;Chung In-Jeoung
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.627-636
    • /
    • 2005
  • The Intelligent Web Service is proposed for the purpose of automatic discovery, invocation, composition, inter-operation, execution monitoring and recovery web service through the Semantic Web and the Agent technology. To accomplish this Intelligent Web Service, the Ontology is a necessity for reasoning and processing the knowledge by the computer. However, creating service ontology, for the intelligent web service, has two problems not only consuming a lot of time and cost depended on heuristic of service developer, but also being hard to be mapping completely between service and service ontology. Moreover, the markup language to describe the service ontology is currently hard to be learned by the service developer In a short time. This paper proposes the efficient way of designing and creating the service ontology using MDA methodology. This proposed solution reuses the creating model in terms of desiEninE and constructing Web Service Model using UML based on MDA. After converting the Platform-Independent Web Service Model to the dependent model of OWL-S which is a Service Ontology description language, it converts to OWL-S Service Ontology using XMI. This proposed solution has profits, oneis able to be easily constructed the Service Ontology by Service Developers, the other is enable to be created the both service and Service Ontology from one model. Moreover, it can be effective to reduce the time and cost as creating Service Ontology automatically from a model, and calmly dealt with a change of outer environment like as the platform change. This paper cites an instance for the validity of designing Web Service model and creating the Service Ontology, and validates whether the created Service Ontology is valid or not.

DART: Data Augmentation using Retrieval Technique (DART: 검색 모델 기술을 사용한 데이터 증강 방법론 연구)

  • Seungjun Lee;Jaehyung Seo;Jungseob Lee;Myunghoon Kang;Hyeonseok Moon;Chanjun Park;Dahyun Jung;Jaewook Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.313-319
    • /
    • 2022
  • 최근 BERT와 같은 트랜스포머 (Transformer) 기반의 모델이 natural language understanding (NLU)와 같은 여러 자연어 처리 태스크에서 좋은 성능을 보인다. 이러한 모델은 여전히 대용량의 학습을 요구한다. 일반적으로, 데이터 증강 기법은 low-resource 환경을 개선하는 데 도움을 준다. 최근 생성 모델을 활용해 합성 데이터를 생성해 데이터를 증강하는 시도가 이루어졌다. 이러한 방법은 원본 문장과 의미론적 유사성을 훼손하지 않으면서 어휘와 구조적 다양성을 높이는 것을 목표로 한다. 본 논문은 task-oriented 한 어휘와 구조를 고려한 데이터 증강 방법을 제안한다. 이를 위해 검색 모델과 사전 학습된 생성 모델을 활용한다. 검색 모델을 사용해 학습 데이터셋의 입력 문장과 유사한 문장 쌍을 검색 (retrieval) 한다. 검색된 유사한 문장 쌍을 사용하여 생성 모델을 학습해 합성 데이터를 생성한다. 본 논문의 방법론은 low-resource 환경에서 베이스라인 성능을 최대 4% 이상 향상할 수 있었으며, 기존의 데이터 증강 방법론보다 높은 성능 향상을 보인다.

  • PDF

A Data Model for XML

  • LEE, Dae-Woo;CHOI, Ok;KIM, Young-Chan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2001.11a
    • /
    • pp.169-171
    • /
    • 2001
  • 본 논문에서는 XML(eXtensible Markup Language)을 위한 데이터 모델을 제시하기 위해 현재 광범위하게 사용되고 있는 관계형 데이터베이스(relational database) 개념을 적용한다. 관계형 데이터베이스는 업무 요구사항의 분석으로부터 고수준의 개념적 데이터 모델을 사용해서 데이터베이스에 대한 개념적 스키마(conceptual schema)를 생성한 다음, 고수준 개념적 데이터 모델을 구현 데이터 모델로 변환하여 논리적 데이터베이스 스키마를 생성한다. 이때, 고수준 개념적 데이터 모델링의 대표적인 방법으로 ER모델을 사용하고, 구현 데이터 모델로 관계 모델(relation model)을 사용한다. XML은 문서의 논리적 구조를 정의하는 DTD와 XML Schema 등을 갖는다. XML의 DTD와 정보 모델링 기법인 E/R 모델은 모두 작은 세계(real world)를 모델링하는 도구들이라고 할 수 있다. 본 논문에서는 XML의 DTD와 E/R 모델의 구성요소들을 분석하여 서로 사상(mapping)시키는 'XML을 위한 데이터 모델(A Data Model for XML)'을 제시한다. 최종적으로 제시된 XML을 위한 데이터 모델에 의해 작은 세계(real world)을 모델링하는 XML DTD에서 정의한 구조(XML Structure)을 따르는 유효한 XML문서(validate XML document)들은 관계형 데이터베이스에 저장할 수 있게 된다.

  • PDF

Exploring the Perceived Value of Generative AI and the Determinants of Continuous Use Intention (생성형 인공지능(Generative AI)에 대한 지각된 가치와 지속이용의도 결정요인 탐색)

  • Su-Ji Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.709-720
    • /
    • 2024
  • By inputting consumer satisfaction as an exogenous variable into the value-based adoption model, this study explored the factors that influence the user's intention to continue using image-centered generative AI. Briefly presenting the main results, first, enjoyment did not significantly affect perceived value, but usefulness had a positive effect on perceived value. Second, Fee and technicality had a negative effect on perceived value. Third, perceived value had a positive effect on consumer satisfaction and continuous use intention. Fourth, consumer satisfaction had a positive effect on continuous use intention. Based on the above results, it is important to recognize the usefulness of image-centered generated AI and enjoyment in the process of use in order to increase the user's intention to continue using image-centered generated AI, and at the same time, it will be important to increase the user's perceived value and satisfaction by minimizing the reasonable fee and complexity in the method of use at the level acceptable to the users.

Interpretable Visual Question Answering via Explain Sentence Generation (설명 문장 생성을 통한 해석 가능한 시각적 질의응답 모델 분석)

  • Kim, Danil;Han, Bohyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.359-362
    • /
    • 2020
  • 본 연구에서는 설명 문장 생성을 통한 해석 가능한 시각적 질의응답 모델을 설계하고 학습 방법을 제시한다. 설명 문장은 시각적 질의응답 모델이 응답을 예측하는 데에 필요한 이미지 및 질문 정보와 적절한 논리적인 정보의 조합 및 정답 추론 과정이 함의되어 있을 것으로 기대한다. 설명 문장 생성 과정이 포함된 시각적 질의응답의 기본적인 모델을 기반으로 여러 가지 학습방법을 통해 설명 문장 생성 과정과 응답 예측 과정간의 상호관계를 분석한다. 이러한 상호작용을 적극적으로 활용할 수 있는 보다 개선 시각적 질의응답 모델을 제안한다. 또한 학습한 결과를 바탕으로 설명 문장의 특성을 활용하여 시각적 질의응답 추론 과정을 개선함으로써 시각적 질의응답 모델의 발전 방향을 논의한다. 본 실험을 통해서 응답 예측에 적절한 설명 문장을 제시하는 해석 가능한 시각적 질의응답 모델을 제공한다.

  • PDF

Evaluation of Large Language Models' Korean-Text to SQL Capability (대형 언어 모델의 한국어 Text-to-SQL 변환 능력 평가)

  • Jooyoung Choi;Kyungkoo Min;Myoseop Sim;Haemin Jung;Minjun Park;Stanley Jungkyu Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.171-176
    • /
    • 2023
  • 최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.

  • PDF