• 제목/요약/키워드: 생산량 예측

검색결과 301건 처리시간 0.029초

에너지 생산량 소비량 예측을 통한 효율적인 계통 독립형 ESS 제어 시스템 (Efficient Grid-Independent ESS Control System by Prediction of Energy Production Consumption)

  • 주종율;오재철
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.155-160
    • /
    • 2019
  • 본 논문에서는 신재생에너지와 농업ICT를 활용한 시설농업용 제어와 에너지생산량과 소비량 예측을 통해 효율적인 계통 독립형 ESS제어시스템을 제안한다. 제안된 시스템은 전력계통 정밀 위상 및 데이터를 시각화하여 유지보수 및 모니터링을 수행할 수 있는 통합 관리 시스템으로 장애 발생 시 자동으로 이에 대해 대처하고 데이터 수집, 처리, 제어가 가능하며, 태양광발전의 전력 발전과 설치된 설비들의 소비 패턴, 설비들의 동작 트랜드를 분석, 기상청 OpenAPI를 활용한 에너지 생산량 소비량 예측을 통해 최적의 에너지 운영 방법을 제시함으로써 불필요한 에너지 소비를 줄이고 운영비용을 절감할 수 있다.

군집분석을 이용한 양파 감성사전 구축 (Construction of Onion Sentiment Dictionary using Cluster Analysis)

  • 오승원;김민수
    • Journal of the Korean Data Analysis Society
    • /
    • 제20권6호
    • /
    • pp.2917-2932
    • /
    • 2018
  • 우리나라 식생활에 밀접한 관련을 가지고 있는 채소인 양파의 수급불균형 해결을 위한 생산량 예측 모형 개발의 노력이 많은 연구를 통해 이뤄지고 있다. 하지만 양파의 수확기와 저장 가능성을 고려해 봤을 때 생산량 예측만으로는 수급불균형 해결이 어렵다. 따라서 본 논문에서는 양파의 생산량 정보와 가격의 다양한 요인이 포함되어 있으며 일상에서 쉽게 접할 수 있는 인터넷 기사를 이용하여 가격 예측을 위한 감성사전을 구축하고자 한다. 양파 기사는 2012년부터 2016년까지의 데이터를 사용하였고 도매시장 가격을 통한 문서구분을 통해 4가지 TF-IDF를 비교하여 적합한 TF-IDF를 사용하였다. 분석을 위하여 분할적 군집분석 중 k-means 군집, 밀도기반군집(DBSCAN; density based spatial cluster applications with noise), 가우시안혼합분포군집(GMM; Gaussian mixture model) 군집을 통하여 가격에 대한 긍정/부정 단어를 구분한 결과 GMM 군집이 의미 있는 긍정, 부정, 무정의 3개의 사전으로 구성되었다. 구축된 사전의 합리성을 비교하기 위하여 가격 상승 기사와 가격 하락 기사의 분류에 로지스틱 회귀분석을 적용한 결과 85.7%의 정확도로 구축된 사전의 합리성을 확인할 수 있었다.

비정형 농업기상자료를 활용한 배추 도매가격 예측모형 연구 (A study on cabbage wholesale price forecasting model using unstructured agricultural meteorological data)

  • 장수희;전희주;조인호;김동환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.617-624
    • /
    • 2017
  • 주로 노지에서 재배되는 배추는 기상 여건에 따라 생산량의 변화가 크고, 대체 작물의 존대로 인해 가격 변동이 크게 나타난다. 기존의 연구에서는 실제 기상정보를 활용해 배추의 생산량을 예측하였으나, 본 연구에서는 실제 기상정보가 아닌 웹상의 비정형 농업기상 정보를 활용하여 도매가격을 예측하였다. 2009년 1월부터 2016년 10월까지 포털사이트에서 배추를 포함한 문서를 수집하여, 수집된 문서 내에 나타난 기상 관련 키워드를 추출하였다. 도매가격만을 이용해 자기회귀 (autoregressive; AR)모형으로 작형별 출하시기인 1, 5, 8, 11월을 예측한 단순모형과 비정형 농업기상 정보를 추가적으로 활용해 AR모형으로 예측한 농업기상모형을 비교하였다. 그 결과 비정형 농업기상 정보를 활용한 농업기상모형의 성능이 더 우수하고 예측력에 도움이 되는 것으로 나타났다.

수요예측시스템 상의 다양한 예측방법의 예측력 비교 (The Comparison of Prediction Capability from Various Prediction methods on Demand.)

  • 김도관
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.137-139
    • /
    • 2017
  • 생산 분야에서는 최적의 수요예측을 통해 최적의 생산량을 적용하는 형태로 변모해가고 있다. 본 연구에서는 현재 수요예측 시스템에서 활용되는 다양한 예측방법들의 예측력을 비교하고자 한다. 이를 통해 최적의 예측력을 제공하는 방법론을 탄력적으로 선택하게 하는 방안을 제공하고자 한다.

  • PDF

머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측 (Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm)

  • 김나은;한희선;아룰모지엘렌체쟌;문병은;최영우;김현태
    • 생물환경조절학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2022
  • 서부 경남 지역 중 딸기재배로 유명한 지역 40개 농가를 대상으로 한 조사에 따르면 국산품종 중에서 "설향"이 65.0%으로서 가장 선호하고 있는 것으로 나타났다. 그리고 현재의 농업은 4차 산업혁명으로 스마트팜(Smart Farm)의 기술이 더욱 발전하고 있는 실정이다. 그러나 각 생육단계가 어떤 상황일 때 딸기의 생산량이 최적에 달하는지 대한 기준이 없으며, 이러한 판단기준은 아직까지 스마트팜에 경험이 있는 농업인의 의사에 달려있다는 문제점이 있다. 따라서 본 연구에서는 딸기의 생육상황에 대한 생산량 예측을 통해 선진화된 스마트팜 시스템을 구축하고자 한다. 실험 장소는 경상남도 사천시의 딸기 농가에서 수행하였으며, 총 3곳을 대상으로 데이터 수집을 진행하였다. 실험 대상의 모든 온실 내에서 재배하는 딸기의 품종은 '설향'이다. 작물 데이터의 수집 항목은 작물의 엽수, 꽃수, 과실수, 초장, 잎의 길이, 엽록소 함량이며, 환경 데이터의 수집 항목은 온도, 습도, 조도이다. 기존의 농가 단위의 스마트팜의 문제점 보완 및 개선을 통하여 고품질의 작물 생장 상태를 유지하기 위해 K-fold 교차검증, Lasso 회귀분석, MAPE 검증을 통해 예측모델을 도출하였으며, MAPE 검증 결과 값으로 0.511(꽃 예측)과 0.488(과일 예측)의 값이 나타났다. 본 연구는 스마트팜 데이터 구축을 위해서는 AI를 통해 성장상태별 수확량을 예측하였으며, 이를 농가 및 농업 관련 기업에 활용해 농업 서비스가 편리할 것으로 판단된다.

군집 별 표준곡선 매개변수를 이용한 치밀오일 생산성 예측 순환신경망 모델 (Recurrent Neural Network Model for Predicting Tight Oil Productivity Using Type Curve Parameters for Each Cluster)

  • 한동권;김민수;권순일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.297-299
    • /
    • 2021
  • 치밀오일 미래 생산성 예측은 잔류오일 회수량 및 저류층 거동 분석을 위해 중요한 작업이다. 일반적으로 석유공학적 관점에서 감퇴곡선법을 이용하여 생산성 예측이 이루어지는데, 최근에는 데이터기반의 머신러닝 기법을 이용한 연구도 수행되고 있다. 본 연구에서는 딥러닝 기반 순환신경망과 LSTM, GRU 알고리즘을 이용하여 미래 생산량 예측을 위한 효과적인 모델을 제안하고자 한다. 입력변수로는 치밀오일 생산 시 산출되는 오일, 가스, 물과 이와 더불어 다양한 군집분석을 통해 산출된 표준곡선이 주요 매개변수이고, 출력변수는 월별 오일 생산량이다. 기존의 경험적 모델인 감퇴곡선법과 순환신경망 모델들을 비교하였으며, 모델의 예측성능을 향상시키기 위해 하이퍼파라미터 튜닝을 통해 최적 모델을 도출하였다.

  • PDF

선형회귀모델을 사용한 쌀 가격 예측 및 쌀 가격에 영향을 미치는 날씨의 시기 탐색 (Prediction of Rice Prices and Search for a Period of Weather Affecting the Prices Based on a Linear Regression Model)

  • 최다정;서진경;고광호;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.37-38
    • /
    • 2022
  • 농산물의 산지 가격이나 도매가격이 등락하면, 즉시 또는 일정한 시차 이후에 소비자가격도 등락한다. 본 논문에서는 선형회귀모델을 통해 쌀 가격을 예측하고 쌀 가격에 영향을 미치는 날씨의 시기를 찾아보고자 한다. 이에 따라 KAMIS, 기상자료개방포털, KOSIS에서 수집한 날씨, 생산량, 그리고 소비자물가 등락률 데이터를 이용하여 쌀 가격 예측을 수행하고, 날씨 데이터와 쌀 가격 데이터의 날짜 간격을 두어 날씨가 쌀 가격에 영향을 미치는 시기를 알아보았다. 모델 평가 결과, 2개월 간격을 두고 예측한 RMSE가 164.135로 가장 큰 영향을 미쳤다. 본 연구를 기반으로 향후 다른 농산물의 가격 예측도 가능할 것이며 농산물에 영향을 미치는 변수의 시기도 예측할 수 있을 것으로 기대한다.

  • PDF

투포원 연사기의 진동특성에 관한 연구

  • 김환국;전두환
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.220-226
    • /
    • 1998
  • 현재의 산업은 물리적인 생산량 증대보다는 작업환경개선을 통한 최적생산을 추구하는 방향으로 변화하고 있으며, 작업환경개선의 일환으로 공장내 기계의 진동 및 소음의 수준을 저감시키는 노력이 꾸준히 진행중이다. 따라서 이러한 노력은 해석 및 실험을 통한 사전예측, 예측결과를 이용한 설계단계부터의 제진 및 저소음설계등으로 이어지며, 또한 제작 완료 후에 계측결과의 분석 및 평가에 의한 진동 및 소음의 저감연구 등으로 나타나고 있다.(중략)

  • PDF

모바일 단말기를 이용한 시설 원예작물 생장 예측도구 개발 (An Implementation of Greenhouse Horticultural Crop Growth Forecasting Tool Using Mobile Device)

  • 김희성;권혜은;안성철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1209-1211
    • /
    • 2012
  • 최근 들어 모바일 단말기의 보급이 확대되면서 스마트 워크, NFC, USN등 사회 전반적으로 많은 분야에서 활용도가 높아지고 있다. 이에 본 논문에서는 모바일 단말기를 활용하여 농가에서 시설 원예작물의 생장 및 생산량을 예측하고 데이터를 관리하기 위한 연구를 진행하여 농가에서의 모바일 단말기 활용을 돕고 시설 원예작물의 재배에 도움이 되고자 한다.

빅데이터 분석을 활용한 마늘 생산에 미치는 날씨 요인에 관한 영향 조사 모형 개발 (Development of Examination Model of Weather Factors on Garlic Yield Using Big Data Analysis)

  • 김신곤
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.480-488
    • /
    • 2018
  • 정보통신 기술의 발전으로 농업분야에서도 다량의 데이터로부터 가치 있는 정보를 생성하고 그 활용을 위해 빅데이터 기술을 적용하는 연구가 활발히 진행되고 있다. 농업에서 재배 가능한 작물과 품종은 기온, 강수량, 일조시간 등의 자연환경의 영향에 따라 결정된다. 본 논문은 마늘의 생육과정과 일별로 측정되는 기상변수를 활용하여 농작물 생산에 영향을 미치는 기상기후 요인을 도출하고 마늘을 대상으로 단위면적당 생산량 예측(단수) 모형을 도출하였다. 기상변수는 마늘의 생육단계를 고려하여 빅데이터 분석 기법을 이용하였다. 탐색적 자료 분석과정에서는 통계청, 농촌진흥청, 농촌경제연구원으로부터 생산량, 도매시장 반입량, 생육 데이터 등 다양한 농산물 생산 데이터를 제공받아 활용하였다. 또한 기상청으로부터 AWS, ASOS, 특보현황 등 다양한 기상관측 데이터를 수집하여 활용하였다. 상관관계 분석 과정은 변수선택, 후보모형 도출, 모형진단, 시나리오 예측 등을 통해 도출한 모형의 모형 적합도와 생산량 예측력을 비교하여 마늘생산단수예측 모형을 설계하였다. 수많은 기상요인 변수는 요인분석을 이용하여 차원을 감소시키고 설명변수로 선정하였다. 이 방법을 이용함으로써 회귀분석에서 발생할 수 있는 다중공선성과 낮은 자유도의 문제를 효과적으로 통제할 수 있었으며 회귀분석의 적합도와 예측력을 높일 수 있었다.