• Title/Summary/Keyword: 생분해성 복합재료

Search Result 30, Processing Time 0.025 seconds

Interfacial Adhesion of Silk/PLA Composite by Plasma Surface Treatment (플라즈마 표면처리에 의한 Silk/PLA 복합재료의 계면접착)

  • 추보영;한철희;권미연;이승구;박원호;조동환
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.189-190
    • /
    • 2003
  • 섬유강화 복합재료의 사용이 점점 증가함에 따라 구조용 및 내장재 등으로 사용된 수명이 다한 섬유강화 복합재료의 사용후 폐기가 문제가 되고 있다. 특히, 자동차 부품, 건축자재 및 전기절연재 등으로 가장 많이 사용되는 유리섬유 복합재료의 폐기물이 급격히 증가하여 환경 오염문제가 심각해지고 있어서, 환경 친화적인 새로운 복합재료에 대한 필요성이 제기되어 왔다. 따라서 본 연구에서는 천연섬유를 이용한 천연섬유/생분해성 수지계 복합소재를 대상으로 환경적합성이 우수하고 자연환경에서 완전한 생분해성을 가지며, 유리 섬유복합재료를 대체할 물성이 우수한 새로운 Biocomposite를 개발하고자 하였다. (중략)

  • PDF

Performance Evaluation of Bone Plates Consisted of BGF/PLA Composite Material according to Body Fluid Exposure Conditions (BGF/PLA 복합재료를 이용한 골절치료용 고정판의 체액 노출 조건에 따른 성능평가)

  • Jung, Kyung-Chae;Han, Min-Gu;Mehboob, Ali;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.21-25
    • /
    • 2017
  • The aim of this study is to fabricate composite bone plates consisted of unidirectional biodegradable glass fibers (BGF) and polylactic acid (PLA) and evaluate the performance of the composite bone plates according to the temperature ($50.0^{\circ}C$) of PBS (Phosphate Buffer Saline) solution and exposure time (0~3 weeks). Mechanical characteristics, such as bending stiffness, flexural strength, water uptake and mass loss, were investigated and the results showed that mechanical properties of the plates decreased as soaking duration increased due to loss of composite material.

Thermal Properties of Corn-Starch Filled Biodegradable Polymer Bio-Composites (옥수수 전분을 충전제로 첨가한 생분해성 고분자 복합재료의 열적성질)

  • Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong;Lee, Young-Kyu;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.29-38
    • /
    • 2004
  • In this study, we investigated the thermal properties of corn-starch filled polybutylene succinate-adipate (PBS-AD) bio-composites. Thermal analysis (TA) is used to describe the analytical method for measuring the chemical property and weight loss of composite materials as a function of temperature. The thermal stability of corn-starch was lower than that of pure PBS-AD. As corn-starch loading increased, the thermal stability and degradation temperature of the bio-composites decreased and the ash content increased. It can be seen that the degree of compatibility and interfacial adhesion of the bio-composites decreased because of the increasing mixing ratio of the corn-starch. As the content of corn-starch increased, there was no significant change in the glass transition temperature (Tg) and the melting temperature (Tm) for the bio-composites. The storage modulus (E') and loss modulus (E") of the corn-starch flour filled PBS-AD bio-composites were higher than those of PBS-AD, because of the incorporation of corn-starch increased the stiffness of the bio-composites. At higher temperatures, the decreased storage modulus (E') of bio-composites was due to the increased polymer chain mobility of the matrix polymer. From these results, we can expect that corn-starch has potential as a reinforcing filler for bio-composites. Furthermore, we recommend using a coupling agent to improve the interfacial adhesion between corn-starch and biodegradable polymer.

Interfacial Evaluation of Plasma-Treated Biodegradable Poly(p-dioxanone) Fiber/Poly(L-lactide) Composites Using Micromechanical Technique and Dynamic Contact Angle Measurement (Micromechanical 시험법과 동적접촉각 측정을 이용한 플라즈마 처리된 생분해성 Poly(p-dioxanone) 섬유강화 Poly(L-lactide) 복합재료의 계면물성 평가)

  • Park, Joung-Man;Kim, Dae-Sik;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.18-27
    • /
    • 2003
  • Interfacial properties and microfailure degradation mechanisms of the oxygen-plasma treated biodegradable poly(p-dioxanone) (PPDO) fiber/poly(L-lactide) (PLLA)composites were investigated for the orthopedic applications as implant materials using micromechanical technique and surface wettability measurement. PPDO fiber reinforced PLLA composite can provide good mechanical performance for long hydrolysis time. The degree of degradation for PPDO fiber and PLLA matrix was measured by thermal analysis and optical observation. IFSS and work of adhesion, $W_a$ between PPDO fiber and PLLA matrix showed the maximum at the plasma treatment time, at 60 seconds. Work of adhesion was lineally proportional to the IFSS. PPDO fiber showed ductile microfailure modes at We initial state, whereas brittle microfailure modes appeared with elapsing hydrolysis time. Interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composites performance because IFSS changes with hydrolytic degradation.

  • PDF

Research on the development of the properties of PLA composites for automotive interior parts (자동차 내장재 적용을 위한 PLA 복합재료의 물성개선에 관한 연구)

  • Jung, Jae-Won;Kim, Seong-Ho;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • Since the environmental problems and new stricter regulations are forcing the industries to introduce more ecological materials for their products, biodegradable materials have attracted increasing attention. Among these materials, Polylactic acid(PLA) is a promising candidate for its modulus, strength, chemical resistance. However, PLA could not be used for automobile industries for its low heat resistance and impact strength. In this study natural fibers were (jute fiber was) introduced as reinforcements in order to improve heat resistance and impact strength of PLA. Especially for improving the adhesion between PLA and jute, various surface treatments were tried. With each treatment, we verified that the impact strength of composite was improved. With annealing treatment, we found a remarkable increase of heat resistance of PLA composite.

A Study on the Interfacial Properties of Bioabsorbable Fibers/PoIy-L-Lactide Composites using Micromechanical Tests and Surface Wettability Measurement (Micromechanical 시험법과 표면 젖음성 측정을 이용한 생흡수성 섬유 강화 Poly-L-Lactide 복합재료의 계면물성 연구)

  • Park, Joung-Man;Kim, Dae-Sik;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.17-29
    • /
    • 2002
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites for implant materials were investigated using micromechanical technique and measurement of surface wettability. As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas those of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. Work of adhesion, $W_a$ between bioactive glass fiber and PLLA was the highest, and the wettability results were consistent with the IFSS. Interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

견 피브로인/카이토산 복합체 섬유의 제조 및 특성화 (I)

  • 박근후;류동일;초상연;신윤숙;박원호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.45-48
    • /
    • 1998
  • 카이토산(chitosan)은 항미생물성, 무독성, 인체적합성 및 양이온성 등의 특성을 지니며 항균, 방취, 보습, 생체적합성 및 생분해성 등의 다양한 기능을 나타내고 있는데, 이를 바탕으로 카이토산을 단독 또는 다른 천연섬유재료와 복합화시키는 연구가 행해지고 있다. 본 연구에서 선택한 카이토산과 복합체를 형성할 수 있는 성분인 견 피브로인(silk fibroin)은 17 종의 아미노산으로 이루어진 단백질로서 의류용 및 의료용 재료로서 이용되고 있는 고급섬유재료이다. (중략)

  • PDF

A Study on the Effect of CNT on Crystallization Kinetics and Hydrolytic Degradation of PKA/CNT Composite (PLA/CNT 복합재료의 결정화 특성 및 가수분해에 미치는 CNT 영향에 대한 연구)

  • Li, Mei-Xian;Kim, Sung-Ha;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.5-10
    • /
    • 2011
  • As environmental pollution getting worse, biodegradable materials have been drawn more attention than ever. In this study, polylactic acid (PLA)/carbon nanotubc (CNT) nanocomposites were manufactured via extrusion molding and injection molding, In order to change the crystallinity, annealing treatment was done for different time span, Crystallization kinetics of PLA was analyzed by differential scanning calorimeter (DSC), and it was confirmed that a proper amount of CNT can increase the crystallization rate of PLA. In addition, the presence of CNT significantly accelerates the hydrolytic degradation rate of PLA, however, it decreases with the increase of crystallinity. The reason is that degradation may occur in the PLA/CNT interface easily, and the molecular structure of the composite becomes dense with the increase of crystallinity.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

Thermal and Mechanical Properties with Hydrolysis of PLLA/MMT Nanocomposite (PLLA/MMT 나노복합재료의 가수분해에 따른 열적, 기계적 물성)

  • Lee Jong Hun;Lee Yun Hui;Lee Doo Sung;Lee Youn-Kwan;Nam Jae-Do
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.375-379
    • /
    • 2005
  • The morphology and therma]/viscoelastic characteristics were investigated for PLLA/MMT nanocomposite manufactured by incorporating inorganic nanosized silicate nanoplatelets into biodeuadable poly(l-lactic acid) (PLLA). The XRD difiactogram and TEM image may be regarded as a formation of homogeneously dispersed nanocomposites. The melting energy(${\Delta}H_m$) was increased during hydrolysis process because of increase of crystallinity. As MMT played a role of reinforcing agent, the storage modulus was increase in case of PLLA/MMT nanocomposite, it was well coincided with our previous results. From SEM image, many tiny pinholes formed by spinodal decomposition were observed on the surface, and the shape of nanocomposite was maintained during hydrolysis process. In this study, it was shown that the control of biodegradation rate, thermal/mechnical property was possibile by incorporating MMT.