• Title/Summary/Keyword: 생물학적 수소 생산

Search Result 62, Processing Time 0.022 seconds

The Effects of Cadmium or Copper on Biological Hydrogen Production (생물학적 수소생산에 구리와 카드뮴이 미치는 영향에 관한 연구)

  • Yoon, Woo-Hyun;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.958-964
    • /
    • 2005
  • Experiment was conducted to investigate the amount of hydrogen gas and the characteristics of organic acids production from various carbohydrates by anaerobic bacteria. The variation characteristics of organic acids and hydrogen gas production at the fermentative culture were also studied in the presence of heavy metals such as cadmium or lopper. 3.43 mole hydrogen per mole of hexose was produced when sucrose was used as a carbon source. Acetic acid and butyric acid were main products by the anaerobic fermentation. Hydrogen production rate was decreased and formation of acetic acid was increased as the concentration of heavy metals was increased in the medium. The inhibition of hydrogen production by the copper was more serious than the cadmium.

Biological Hydrogen Production from Mixed Organic Waste of Food and Activated Sludge by Pre-treatment (음식물쓰레기와 전처리한 폐활성슬러지의 혼합비율에 따른 생물학적 수소생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Choi, Kwang-Keun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1044-1050
    • /
    • 2007
  • In this study, Bio-hydrogen is produced from organic waste mixtures containing food waste and waste activated sludge (WAS). The effects of different operational factor on hydrogen production, including various solubilization methods for pretreatments of WAS, pH and different ratios of food waste and WAS, were investigated. The highest hydrogen production values are obtained as 4.3 mL $H_2/g$ $VS_{consumed}$ in the case of applying the mixed pre-treatments of alkali and ultrasonic. The pH value in bio-reactor increased from 4 to 8 after the ultrasonic treatment with alkali and the hydrogen yield touched its highest value in the pH range of 5.0 to 5.5. Similarly, the hydrogen production reached the level of 13.8 mL $H_2/g$ $VS_{consumed}$ using the same pre-treatment method from the mixture of food waste and WAS. The ratio of 2 : 1 produced a maximum amount of hydrogen of 5.0 L $H_2/L/d$. The amount of volatile fatty acids(VFAs) including acetate, propionate and butyrate, were also varied considerably. Propionate decreased consistently with rising of hydrogen while butyrate comparing to acetate relatively increased in the effluent.

A Study of Biological Hydrogen Gas Production under Anaerobic Fermentation (혐기성 발효에 의한 생물학적 수소생산에 관한 연구)

  • Yoon, Woo-Hyun;Kim, Hyun-Kab;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2006
  • In this study, the optimum condition of pH was investigated on the hydrogen gas production under anaerobic fermentation process. The results of the experiment showed that the optimum condition was observed at pH 6, resulting in 1175.87 mL/L of hydrogen gas production rate and 22.51% theoretical hydrogen conversion ratio. Hydrogen gas production rate and theoretical hydrogen conversion ratio were 901.77 mL/L and 17.48 % respectively at pH 5. At pH 7 and 8, the production rate of hydrogen gas was little low as 82.15 mL/L. Among the organic acids from the sucrose fermentation, propionate was observed as the dominant acid at pH 7 and 8 but butyrate was the dominant at pH 5 and 6.

  • PDF

Continuous Bio-hydrogen Production from Food Waste and Waste Activated Sludge (음식물 쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산 및 수소생산 미생물 군집분석)

  • Kim, Dong-Kun;Lee, Yun-Jie;Kim, Dong-Im;Kim, Ji-Seong;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.438-442
    • /
    • 2005
  • Batch experiments were performed to investigate the effects of volumetric mixing ratio(v/v) of two substrates, food wastes(FW) and waste activated sludge(WAS). In batch experiments, optimum mixing ratio for hydrogen production was found at $10{\sim}20$ v/v % addition of WAS. CSTR(Continuous Stirred tank reactor) was operated to investigate the hydrogen productivity and the microbial community under various HRTs and volumetric mixing ratio(v/v) of two substrates. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80(WAS:FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization(FISH) method.

A study for Solubilization and Bioavailability of Sewage Sludge Using the Complex Pre-treatment (복합 전처리를 통한 하수슬러지의 가용화 및 생물학적 유용성에 관한 연구)

  • Kang, Jung-Hyun;Lee, Hee-Soo;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.35-43
    • /
    • 2011
  • In this study, anaerobic biological decomposition were attempted after solubilization treatment of sewage sludge with the complex pre-treatment (acid/base treatment with ultrasonic radiation). Solubilization ratios were compared for ultrasonic treatment at acid or base condition. Solubilization effect of the complex pre-treatment was more effective at higher pH. Biological decomposition of complex pre-treated sludge was faster than non treated (raw) sludge, showing 10 times higher total gas production. Biological digestion of the sludge shows more biogas production. B/A ratio. which indicates hydrogen production potential, was 50% higher with complex pre-treated sludge than raw sludge but lactic acid or propionic acid were also detected during anaerobic decomposition process.

Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater (두부 폐수를 이용한 수소생산 및 미생물의 군집 변화)

  • Jun, Yoon-Sun;Joe, Yoon-A;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, characteristics of biological hydrogen production and microbial distribution were investigated with the wastewater of Tofu manufacturing process. Comparison of hydrogen production was conducted with acid or base pre-treatment of the wastewater. Maximum hydrogen production was acquired with combination of heat and acid treatment. Hydrogen production ($P_h$) and maximum hydrogen production rate ($R_h$) was calculated 661.01 mL and 12.21 mL/g dry wt biomass/hr from the modified Gompartz equation. Most of microbial community was analyzed as Streptococcus sp. from PCR-DGGE experiment of 16S rDNA. It was concluded that most significant microorganism for hydrogen production was Streptococcus gallolyticus sub sp. in this experiment.

Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii (황결핍 된 Chlamydomonas Reinhardtii 배양액에서 수소생산을 위한 제한 인자들의 영향)

  • Kim, Jun-Pyo;Sim, Sang-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.286-292
    • /
    • 2006
  • Chlamydomonas reinhardtii is a green algae that can use light energy and water to produce hydrogen under anaerobic condition. This work reports the effect of limiting factors on hydrogen production in sulfur deprived anaerobic C. reinhardtii culture. In order to confirm the relationship between hydrogen production and limiting factors such as residual PSII activity and endogenic substrate degradation, the increase in chlorophyll concentration and the decrease in starch concentration was investigated during sulfur deprivation. The overall hydrogen production increased depending on cell density in range of $0.4{\sim}0.96\;g$ DCW/l. At this time, the increase in chlorophyll concentration during 24 h after sulfur deprivation increased in proportion to hydrogen production, however, the decrease in starch concentration was not proportional to that. Therefore, hydrogen production under sulfur deprivation using green alga was closely associated with the residual PSII activity than the endogenic substrate degradation.

Biological Hydrogen Production from Mixed Waste in a Polyurethane Foam-sequencing Batch Reactor (혼합폐기물 및 폴리우레탄 담체를 충전한 연속회분식공정을 이용한 생물학적 수소생산)

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • This study investigated the effects of polyurethane foam on continuous hydrogen production from mixed wastes. Molasses was co-fermented with non-pretreated sewage sludge in a sequencing batch reactor. The results indicated that the addition of polyurethane foams as a microbial carrier in the reactor mitigated biomass loss at HRT 12 h, while most of the biomass was washed out during the operation period with no carrier. There was a stable hydrogen production rate of $0.4L-H_2/l/d$ in the carrier-sequencing batch reactor. Suspended biomass in the carrier-reactor indicated it possessed the highest specific hydrogen production rate ($241{\pm}4ml-H_2/g\;VSS/d$) when compared to that of biomass on the surface ($133{\pm}10ml-H_2/g\;VSS/d$) or inner carrier ($95{\pm}14ml-H_2/g\;VSS/d$).

Characteristics of Biological Hydrogen Production from Sewage Sludge treated by Optimal Solubilization Technology (최적 가용화 기술로 처리된 하수슬러지의 생물학적 수소 생산 특성)

  • Choi, Kwang-Keun;Kim, Sun-Jip;Lee, Tae-Joon;Park, Dae-Won;Lee, Won-Kwon
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.353-359
    • /
    • 2006
  • The purpose of this study is to search the optimal solubilization technology which could be applied to sewage sludge, and is to find the characteristics of biological hydrogen production when the sludge treated by optimal method was used as a sole substrate. As a result of the test, treatment technology mixed with alkali and ultrasonic treatment was very powerful tool for treating sewage sludge with high solubilization, and its ratio and elution rate of organic material was 0.9 and 0.076 $min^{-1}$, respectively. When the sludge treated by above optimal technology was used, 4.4 ml $H_2/g$ VSS of hydrogen was produced. Finally, When the sludge treated by above optimal technology was used, 13.4 ml $H_2/g$ VSS of hydrogen was produced under optimum pH.

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production (혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산)

  • LEE, CHAE-YOUNG;YOO, KYU-SEON;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.