• 제목/요약/키워드: 생물학적 수소 생산

검색결과 62건 처리시간 0.033초

생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구 (A Study on the pretreatment of Activated Sludge for Bio-hydrogen Production process)

  • 김동건;김지성;박호일;이유나;박대원
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2004년도 학술대회지
    • /
    • pp.21-33
    • /
    • 2004
  • 본 연구에서는 혐기성 발효조건에서 오니슬러지의 전처리에 대한 영향과 수소생산 잠새성을 평가하기 위하여 회분식 반응기를 이용하여 $35^{\circ}C$에서 혐기성 미생물을 이용하여 실험을 실시하였다. 다양한 전처리 조건의 오니슬러지를 유기원으로 이용하기 위한 실험을 실시하였다. 본 연구에서는 다양한 물리, 화학, 생물학적 오니 슬러지 가용화를 위한 전처리 기술을 개발하였으며, 실험결과 알칼리 및 기계적전처리를 통하여 원수의 상등수의 SCODcr 대비 약 15배 및 12배의 증가율을 보였으며, 이를 다시 생물학적 전처리 방법인 가수분해를 실시할 경우 다시 2배의 증가율을 보여 화학적 전처리와 생물학적 전처리를 연계할 경우가 가장 효과적인 공정임을 확인하였다. 또한 오니슬러지를 기질로 이용하여 생물학적 수소생산의 잠재성을 확인하기 위하여 전처리된 슬러지를 대상으로 수소 생산 여부를 회분식으로 실시한 결과, 완충용액을 첨가한 경우가 완충용액을 첨가하지 알은 경우에 비하여 다양한 전처리 조건에서 수소생산이 가능함을 확인하였다.

  • PDF

폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구 (Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge)

  • 김동건;이윤지;유명진;박대원;김미선;상병인
    • 대한환경공학회지
    • /
    • 제28권4호
    • /
    • pp.362-367
    • /
    • 2006
  • 도시 하수처리장에서 수집되는 폐활성 슬러지는 유기성 물질을 다량 함유하고 있는 바이오매스이다. 하지만, 대부분의 연구 결과 폐활성 슬러지를 이용한 생물학적 수소생산율은 매우 낮다고 보고되고 있다. 본 연구에서는 폐활성 슬러지를 산, 알카리 처리, 기계적 처리, 열처리, 오존 처리, 초음파 처리 등의 전처리에 대한 효과를 살펴보았다. 전처리 실험결과, 폐활성 슬러지 내의 유기물질들은 가용화되었으며 $SCOD_{Cr}$값으로 약 14.6배의 증가를 보였다. 열처리된 혐기성 슬러지를 이용하여 폐활성 슬러지로부터 최적의 생물학적 수소생산을 위한 실험은 전처리 방법에 대한 효과 및 완충용액의 효과, 수소분압, 그리고 염소이온의 농도 등에 대하여 회분식 조건에서 살펴보았다. 실험결과 효과적인 전처리 방법 및 완충용액의 첨가, gas sparging 등의 방법에 의한 낮은 수소분압인 경우에 수소생산율이 0.52 mmol $H_2/g$-DS(Dried Solids)로 크게 증가함을 확인하였다.

PVDF 여과막 생물막 반응기를 이용한 혐기 세균 복합체의 고온 수소생산 (Thermophilic Hydrogen Production from Microbial Consortia Using PVDF Membrane Bioreactor)

  • 오유관;이동렬;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.223-229
    • /
    • 2007
  • 여과막 생물반응기를 이용하여 $60^{\circ}C$에서 혐기 세균 복합체가 포도당으로부터 수소를 생산할 수 있는 최적조건을 연구하였다. 여과막 생물반응기는 연속교반 탱크반응기와 외부에 장착된 PVDF (polyvinylidene fluoride) 중공사막 여과장치로 구성되었다. 접종슬러지는 하수처리장 소화 슬러지조에서 얻었고, 포자형성 수소생산 미생물을 얻기 위해 $90^{\circ}C$에서 20분 간 열처리하였다. 16S rRNA PCR-DGGE(polymer chain reaction-denaturing gradient gel electrophoresis) 분석을 통해 열처리 전후의 미생물상 변화를 조사하였다. 열처리 후 DGGE 밴드의 수는 감소하였고, 주요 밴드는 Clostridium perfringens와 유사한 염기서열을 나타내었다. 운전 기간 동안 바이오가스 내 수소함량은 60%(v/v)를 유지하였고, 메탄은 검출되지 않았다. 연속교반 탱크반응기를 여과막 없이 수력학적 체류 4시간에서 운전하였을 때 공급된 포도당의 95.0%가 제거되었고, 이때 균체농도 및 수소생산속도는 각각 1.35 g cell/L 및 7.4 L $H_2$/L/day이었다. 동일한 체류시간에서 PVDF중공사막 여과장치를 장착하여 연속교반 탱크반응기를 운전하였을 때, 균체농도는 1.62 g cel/L로 증가하였고 높은 포도당 제거율(99.5%) 및 수소생산속도(8.8 L $H_2$/L/day)가 관찰되었다. 40 nm 및 100 nm의 공극크기를 가진 여과막은 균체농도 및 수소생산 측면에서 유사한 성능을 나타내었다. 여과막 생물반응기는 여과막의 반복적인 세척을 통해 30일 이상 안정적으로 운전될 수 있었다.

산·알칼리 전처리를 통한 제당 폐수의 생물학적 수소생산 (Biological Hydrogen Production By Pre-treatment of Sugar Wastewater Using Acidic or Alkaline Chemicals)

  • 이태진
    • 대한환경공학회지
    • /
    • 제35권1호
    • /
    • pp.10-16
    • /
    • 2013
  • 제당폐수를 산 또는 알카리 전 처리한 후 생물학적 수소생산율과 유기산의 생성특성을 평가하였다. 제당 폐수의 수소발생량은 산 전처리된 경우 보다 알칼리 전처리된 시료에서 약 70%의 발생량 증가를 나타내었다. 또한 제당폐수 원액에 적절한 영양염류(질소 인)를 공급하였을 때 보다 양호한 수소생성률을 보여주었다. 제당폐수의 혐기발효에 있어서 탄수화물의 분해와 수소생성의 직접적인 연관성은 나타나지 않았다. Butyric acid/Acetic acid (B/A)비와 수소생산의 연관성을 살펴보았을 때, 영양염류를 첨가한 제당폐수는 순수 제당폐수보다 B/A비가 약 3배 증가하였으며 알카리 전처리와 영양염류를 첨가한 시료에서 B/A비가 4.02로 가장 높게 나타났다. 실험에 사용된 전체 시료에서 B/A비가 클수록 수소생성률이 높았다.

Enterobacter aerogenes의 혐기발효에 의한 바이오 수소 생산 배지의 최적화 (The Optimization of Biohydrogen Production Medium by Dark Fermentation with Enterobacter aerogenes)

  • 김규호;최영진;김의용
    • KSBB Journal
    • /
    • 제23권1호
    • /
    • pp.54-58
    • /
    • 2008
  • 수소는 연료전지와 같은 친환경적인 용도로 인해 미래의 에너지로서 주목받고 있는데, 생물학적인 발효법은 수소의 생산을 위한 유망한 방법이다. 본 연구에서는 Enterobacter aerogenes KCCM 40146을 대상으로 수소 생산을 최대로 하기 위한 배지의 조건을 최적화하였다. 그 결과, 0.5M potassium phosphate buffer pH 6.5에서 glucose 30 g/L일 때 수소의 누적 농도가 431 $m{\ell}$로 최대값을 얻을 수 있었다. 질소원으로 peptone과 tryptone을 넣은 배지가 수소의 생산 뿐 아니라 균주의 성장에 가장 효율적이었다 한편, 미생물의 성장속도조절이 수소의 효율적 생산을 위해 중요한 실험변수임을 알 수 있었다.

생물학적 수소생산을 위한 혐기성 연속 회분식 반응조(ASBR)의 장기운전 특성 (Long Term Operation of Biological Hydrogen Production in Anaerobic Sequencing Batch Reactor (ASBR))

  • 정성진;서규태;이택순
    • 대한환경공학회지
    • /
    • 제35권1호
    • /
    • pp.1-9
    • /
    • 2013
  • 혐기성 연속 회분식 반응조(Anaerobic sequencing batch reactor; ASBR)를 이용하여 혼합배양을 통한 장기간의 수소생산특성을 조사하였다. 실험에 사용된 기질은 글루코오스(8,250 mg/L)였고, pH 5.5, 온도 $37^{\circ}C$, 교반속도 150 rpm으로 설정하여 160일 동안 반응조를 운전하였다. 운전초기에 F/M비 2로 유지되어 수소생산 수율은 0.8 mol $H_2/mol$ glucose의 수소가 생산되었고, 운전 80일째 수소생산수율은 2.68 mol $H_2/mol$ glucose까지 증가하였다. 그러나 그 이후로 수소 생산량이 지속적으로 감소하여 운전 130일경 이후 수소의 생산은 없는 것으로 나타났다. PCR-DGGE분석을 통해 반응조내 미생물은 일반적인 수소생성 균으로 알려지고 있는 Clostridium sp.가 검출되었으나 반응조 운전 조건의 변화가 수소생산 저감의 주된 원인으로 밝혀졌다. 즉 반응조의 MLSS 농도가 증가함에 따라 F/M비가 감소하고 생산된 수소는 propionic acid의 생성으로 소모되는 것으로 추정할 수 있고 이는 반응조의 F/M비 0.5와 propionic acid 농도는 2,130 mg/L로 높게 유지된 것으로 확인하였다.

생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구 (A Study on the Pretreatment of Activated Sludge for Bio-hydrogen Production Process)

  • 박대원;김동건;김지성;박호일
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.187-193
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operation at $35^\circ{C}$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods to conform hydrogen production potential in bath experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition. Combination of alkali and mechanical treatment was higher in hydrogen production potential than other treatments.

수소생산 기술동향 (Technical Trends of Hydrogen Production)

  • 이신근;한재윤;김창현;임한권;정호영
    • 청정기술
    • /
    • 제23권2호
    • /
    • pp.121-132
    • /
    • 2017
  • 온실가스 배출과 지구온난화 문제로 인하여 화석연료를 대체할 수 있는 신재생에너지 개발 및 확산의 필요성이 증가하고 있는데, 청정에너지원인 수소가 주목을 받고 있다. 수소는 지구상에서 가장 많이 존재하는 원소이며, 화석연료, 바이오매스 및 물 등 다양한 형태로 존재한다. 수소를 연료로 사용하기 위해서는 경제적인 방법뿐만 아니라 환경에 미치는 영향을 최소화하는 방법으로 생산하는 것이 중요하다. 수소생산방법에는 전통적 방법인 화석연료 개질반응을 통한 생산과 재생가능한 방법인 바이오매스 및 물을 이용한 생산으로 나뉜다. 화석연료를 이용한 수소생산은 습윤개질반응, 자열개질반응, 부분산화반응 및 가스화반응 등 열화학적 방법으로 가능한데, 이를 청정에너지원으로서 사용하기 위해서는 수소생산과 더불어 이산화탄소 포집이 필요하다. 바이오매스를 이용한 수소생산은 그 양이 매우 미미한 수준이며, 특히 생물학적 전환법은 효율증가를 위한 반응기 구성, 수소생산미생물 배양 등 효과적으로 수소를 생산하기 위한 연구가 더욱 진행되어야 한다. 물분해를 통한 수소생산이 가장 청정한 수소생산기술이지만 태양광, 태양열, 풍력 등 재생 가능한 에너지원으로부터 충분한 에너지공급이 가능해야 한다.