• Title/Summary/Keyword: 생물체로봇

Search Result 15, Processing Time 0.019 seconds

Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism (4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • In this study, a crab robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism, and its kinematics is analysed. A vision camera is attached to the mechanism, which makes the proposed robot a kind of biologically inspired robot for image acquisition. Three ultrasonic sensors are adopted for obstacle avoidance. In addition, the biologically inspired robot can achieve the mission appointed by a programmer outside, based on RF and Blue-tooth communication module. For the design and implementation of a crab robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

Development of an Imaging Processing System for Automation of a Callus Inoculation (식물조직배양 자동화를 위한 영상처리장치 개발)

  • Chung, Suk-Hyun;No, Dae-Hyun;Song, Jae-Kwan
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2009
  • This study was conducted to develop an imaging processing system of inoculation processing of a lily callus. The image processing system was composed of a camera, a image processing board, and etc. And the illuminance always decided by setting up 55W/3 wavelength lamp respectively on all aspects and the side was maintained by the lighting part. The image characteristic was examined according to each frame of RGB,therefore the culture vessel was able to be separated with B frame. The required time was 2.2 seconds in one cycle from the image acquisition to obtaining the result. The recognition rate of the container was 100%, and the result of image processing showed that the recognition success rate of lily callus was 93%.

Kinematic Modelling of the Trot of a Lizard Based on the Motion Capture (모션 캡쳐에 기반한 도마뱀 속보에 대한 기구학적 모델링)

  • Kim, Chang Hoi;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.264-273
    • /
    • 2013
  • The importance of the robots has emerged as the means of minimizing the casualties in the future war, and, thus, the biomimetic robots mimicking the optimized organisms has been actively studied. The robot inspired lizard is suitable for reconnaissance and the surveillance in narrow areas. In this paper, we analyzed the locomotion of a lizard by motion capture system using the infrared markers. We attached 21 markers to the joints of the lizard. By considering the measured data, we analyzed the walking motion of the lizard which trots in a sprawled posture. Moreover, we proposed the 25 dof kinematic model which was able to reproduce the gait of the lizard faithfully. The model was verified by simulations.

Analysis of Motion of Batoid Fins for Thrust Generation by Using Fluid-Structure Interaction Method (추진력 생성을 위한 가오리 날개 짓의 유체-구조연성 수치해석)

  • Kwon, Dong-Hyun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1575-1580
    • /
    • 2010
  • Recently, the development of bio-mimetic underwater vehicles that can emulate the characteristic movements of marine fish and mammals has attracted considerable attention. In this study, the motion of the batoid (i.e., cownose ray) fin that facilitates excellent cruising and maneuvering during underwater movement has been studied. The velocity achieved and distance covered with each fin movement are numerically studied. A fluid-structure interaction method is used to perform 3D time-dependent numerical analysis, wherein an adaptive mesh is employed to account for the large deformation of a fin interacting with a fluid. The results of a preliminary study show that the thrust of a ray fin is highly dependent on the frequency. Further, once the fin amplitude required for generating a given thrust is evaluated for the conditions experienced by an actual ray, the frequency and amplitude values for achieving better thrust are determined.

Text-mining Techniques for Metabolic Pathway Reconstruction (대사경로 재구축을 위한 텍스트 마이닝 기법)

  • Kwon, Hyuk-Ryul;Na, Jong-Hwa;Yoo, Jae-Soo;Cho, Wan-Sup
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.138-147
    • /
    • 2007
  • Metabolic pathway is a series of chemical reactions occuning within a cell and can be used for drug development and understanding of life phenomenon. Many biologists are trying to extract metabolic pathway information from huge literatures for their metabolic-circuit regulation study. We propose a text-mining technique based on the keyword and pattern. Proposed technique utilizes a web robot to collect huge papers and stores them into a local database. We use gene ontology to increase compound recognition rate and NCBI Tokenizer library to recognize useful information without compound destruction. Furthermore, we obtain useful sentence patterns representing metabolic pathway from papers and KEGG database. We have extracted 66 patterns in 20,000 documents for Glycosphingolipid species from KEGG, a representative metabolic database. We verify our system for nineteen compounds in Glycosphingolipid species. The result shows that the recall is 95.1%, the precision 96.3%, and the processing time 15 seconds. Proposed text mining system is expected to be used for metabolic pathway reconstruction.

  • PDF