• Title/Summary/Keyword: 생물분해능

Search Result 32, Processing Time 0.021 seconds

Control of Gaseous Styrene Using a Bioactive Foam Reactor (계면활성제 미생물반응기를 이용한 기체상 스타이렌 제어)

  • Shin, Shoung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.770-775
    • /
    • 2006
  • Biofilters packed with various materials commonly show problems such as low performance and clogging in a long-term operation. Recently, a bioactive foam reactor(BFR) using surfactants has been suggested to ensure efficient and stable VOCs removal performance. This study was mainly conducted to investigate the feasibility of the BFR system using styrene as a model compound. An abiotic md a biotic tests were conducted to estimate a mass transfer coefficient($K_La$) and a specific substrate utilization coefficient(k) for the BFR, showing the rate of mass transfer was greater in the BFR than in other diffuser systems. A dynamic loading test also indicated that the performance of the BFR was stable under a shock loading condition. Furthermore, the maximum elimination capacity of the BFR was determined to be 109 $g/m^3/hr$ for styrene, which was much higher than those for biofilter systems generally reported in the literature. Overall, the experimental results suggest that the BFR be a potential alternative to the conventional packed-bed biofilters.

Removal of NOM Using Biological Rope Media Sedimentation Tank (로프형 미생물 담체 침전조를 이용한 상수원수중의 NOM 제거)

  • 심상준;강연석;김우식;박대원
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.332-336
    • /
    • 2001
  • This paper is intended as an application of the biological rope media sedimentation tank using biodegradability of BAC(Biological activated carbon) to the drinking water treatment system for the removal of NOM. The removal of DOC(Dissolved organic carbon), UV absorbance(UV$\_$254/), and turbidity were evaluated under various operation condition of a biological rope media sedimentation tank such as raw water-media process (Media 1), ozonation-media process (Media 2), and ozonation-coagulation/sedimentation-media process (Media 3). The raw water had DOC concentration of 1.3∼3.4 mg/L, UV$\_$254/ of 0.027∼0.039 cm$\^$-1/, and turbidity of 0.3∼4.5 NTU, respectively. The average DOC concentration were 2.2 mg/L in media 1, 1.8 mg/L in media 2, and 1.3 mg/l in media 3 from raw water, respectively. On the other hand, the DOC concentration in conventional sedimentation tank was 1.5 mg/l. Higher removal of the DOC was noted in media 3 than media 1 and media 2. The UV$\_$254/ of the treated water were 0.037 cm$\^$-1/ in media 1, 0.027 cm$\^$-1/ in media 2, and 0.014 cm$\^$-1/ in media 3 from raw water, respectively The UV$\_$254/ in conventional sedimentation tank was 0.014 cm$\^$-1/ which is similar to that of media 3. Average turbidity of the treated water was 1.1 NTU in media 1, 0.9 NTU in media 2, and 0.5 NTU in media 3, respectively. It is expected that the biological rope media sedimentation tank is a good alternative over the conventional sedimentation process from these results.

  • PDF

Manufacture of Cutting-Gouda Cheese using Lactobacillus rhamnosus_p1 and the Physicochemical Properties of Gouda Cheese during Ripening Periods (Lactobacillus rhamnosus_p1을 이용한 절단형 고다치즈 제조방법 및 숙성 중 품질특성)

  • Park, Jong-Hyuk;Jung, Hoo-Kil;Moon, Hye-Jung;Oh, Jeon-Hui;Lee, Joo-Hee;Kim, Myung-Kon;Na, Sang-Eon;Kim, Youn-Jeong;Hwang, Young-Tae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.131-139
    • /
    • 2014
  • The aim of this study was to manufacture Cutting-Gouda cheese and to investigate the change in physicochemical properties of Cutting-Gouda cheese made with Lactobacillus rhamnosus_p1. Lactic acid bacteria were isolated from Gouda cheese ripened for more than 1 year. They were identified as 2 strains of L. rhamnosus, Lactobacillus casei, Lactobacillus curvatus, and Staphylococcus saprophyticus by 16S rDNA sequencing and named L. rhamnosus_p1, L. casei_p2, L. curvatus_p3, L. rhamnosus_p4 and S. saprophyticus_p5. The proteolytic activities of isolated strains against casein were measured using prepared skim milk agar plates. L. rhamnosus_p1 showed the highest proteolytic activity. Cutting-Gouda cheese was made with L. rhamnosus_p1, and its physicochemical properties (moisture, protein, fat, ash and free amino acid content) were measured during ripening periods. Because of the modified atmosphere packaging ($N_2{^-}$), there was no change in moisture, protein, fat, and ash in the experimental group. The total amount of free amino acids in the control and experimental group gradually increased during ripening periods. The sensory evaluation showed that the experimental group was preferable to the control group. This result suggests that L. rhamnosus_p1 has potential to be developed as a new starter for Gouda cheese.

  • PDF

Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성)

  • Seo, In-Suk;Son, Hee-Jong;Choi, Young-Ik;Ahn, Wook-Sung;Park, Chung-Kil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.184-191
    • /
    • 2007
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested for an adsorption and biodegradation performances of nitrogenous chlorinated by-products such as chloropicrin, DCAN, DBAN and TCAN. In early stage of operations, an adsorption performance was a main mechanism for removal of nitrogenous chlorinated by-products, however as increasing populations of attached bacteria, the bacteria played a major role in removing nitrogenous chlorinated by-products in the activated carbon and anthracite biofilter. It was also investigated that the compounds were readily subjected to biodegrade. Whilst the coal- and coconut-based activated carbons were found most effective in adsorption of the compounds, the anthracite was worst in adsorption of the compounds. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria were inhibited for removal of the compounds at temperatures below $10^{\circ}C$. The attached bacteria were more active at higher water temperatures$(20^{\circ}C\;<)$ but less active at love. water temperature$(10^{\circ}C\;>)$. The removal efficiencies of the compounds obtained using coal-, coconut- and wood-based activated carbons and anthracite were directly related to the water temperatures. In particular, water temperature was the most important factor for removal of the compounds in the anthracite biofilter because the removal of the compounds depended mainly on biodegradation. Therefore, the main removal mechanism of the compounds the main mechanism on the removal of the compounds using activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that using coal-based activated carbon is the best for removal of nitrogenous chlorinated by-products in the water treatment.

Removal Characteristics of Chlorination Disinfection By-Products by Activated Carbons (활성탄 공정에서의 염소 소독부산물 제거특성)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Bae, Seog-Moon;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.762-770
    • /
    • 2005
  • Adsorption and biodegradation performance of chlorinated by-products such as trihalomethanes(THMs) and haloacetic acids(HAA5) on granular activated carbon were evaluated in this study. The coconut-based activated carbon was found more effective than others in adsorption of THMs due to larger pore volume of less than $20{\AA}$. The wood-based activated carbon was less effective than coconut- and coal-based activated carbon in adsorption nevertheless having larger pore volume and specific surface area than others. The maximum adsorption capacity(X/M) of coconut-based carbon for THMS was 1.1-1.5 times larger than coal based carbon and 14.1-31.4 times larger than wood based activated carbons. Activated carbon usage rate(CUR) of coconut-, coal- and wood-based activated carbons for chloroform were 9.4, 11.2 and 38 g/day respectively. In the evaluation of adsorption isotherm of THM species for coconut-, coal- and wood-based activated carbons, k value of chloroform was the lowest in the THM species, It menas that chloroform is difficult to remove by activated carbon adsorption. and BDCM, CDBM, bromoform are in the succeeding order of adsorption. In the evaluation of biodegradation rate, mean biodegradation rate was chloroform 7%, BDCM 5%, CDBM 4% and bromoform 3%, respectively THMs are difficult materials to be biodegraded. In the evaluation of characteristics of adsorption and biodegradation for HAA5 species, HAA5 species appear to be removed effectively by activated carbon. Most of the HAA5 are adsorbed at the beginning of operation periods and HAA5 except TCAA were almost biodegraded from bed volume of 2,000 and more than 90 percent of biodegradation of TCAA was started from bed volume around 4,000 and after that biodegradation rate was increased with increasing bed volume.

Isolation and Characterization of Biosurfactant from Bacillus atrophaeus DYL,-130 (Bacillus atrophaeus DYL-130이 생산하는 biosurfactant의 분리 및 특성)

  • Kim Sun-Hee;Lee Sang-Cheol;Park In-Hye;Yoo Ju-Soon;Joo Woo-Hong;Hwang Cher-Won;Choi Young-Lark
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.679-684
    • /
    • 2005
  • The objective of this study was investigate the characteristic of biosurfactant produced from the iso-lated strain. The strain was isolated from soli samples of Duck-Yu Mountain and it was identified as Bacillus atrophaeus DYL-130 by 16S rDNA and gyrA gene nucleotide sequence analysis. The surface ten-sion of culture filtrate of Bacillus atrophaeus DYL-130 decreased to 28 mN/m and its biosurfactant con-centration was determined by diluting the culture filtrate until the critical micelle concentration (CMC). The emulsifying activity and stability of crude biosurfactant was measured by using water-immiscible hydrocarbons and oils as substrate. The biosurfactant was purified by affinity chromatography and the surface activity of purified biosurfactant was measured by drop-collapsing method and it could be effectively emulsify toluene.

The Removal of Styrene using Immobilized Microorganisms in Hydrogel Beads (미생물 고정화 복합고분자담체를 이용한 Styrene 제거)

  • Song, Ji-Hyeon;Ham, Eun-Yi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.648-653
    • /
    • 2006
  • As an alternative for the traditional materials packed in biofilters treating gaseous VOCs, a novel packing material has been developed and tested. In the packing material(named as Hydrogel Bead, HB), pollutant-degrading microorganisms were immobilized in hydrogel consisted of alginate, polyvinyl alcohol(PVA), and powdered activated carbon. A closed-bottle study showed that the HB rapidly removed gaseous styrene without the losses of adsorption and biodegradation capacity. Biofilter column experiments using the HBs also demonstrated that greater than 95% of removal efficiencies were found at an inlet styrene loading rate of $245g/m^3/hr$, which was higher biofilter performance than other elimination capacity reported earlier. Furthermore, when the inlet styrene concentration increased stepwise, the adsorption played an important role in overall styrene removals. The absorbed styrene was found to be biodegraded in the following low inlet loading condition. Consequently, the new HB material is able to successfully minimize the drawbacks of activated carbon(necessity of regeneration) and biological processes(low removal capacity at dynamic loading conditions), and maximize the overall performance of biofilter systems treating VOCs.

A Study on the Relationships Between the Epiphytic Microbes and the Blight of Porphyra Species from the Coastal Waters of the Yellow Sea, Korea -III. Seasonal Variation of Heterotrophic Bacteria on the Blades of Porphyra Species Near Mokp'o- (서해산 김 엽체상의 미소생물과 김의 병해와의 관계에 대한 연구 -III. 김 엽체상에 부착된 종속영양세균의 계절적 변화-)

  • KIM Jeong-Hee;LEE Geon-Hyoung;LEE Won-Ho;KIM Joong-Rae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.314-321
    • /
    • 1992
  • To study the seasonal variation of heterotrophic bacteria on the blades of Porphyra species, samples were collected In the intertidal zone near Mokp'o of the Yellow Sea from February to December, 1990 Annual distribution of heterotrophic bacteria on the blades of Porphyra species ranged from $6.9\times10^2\;to\;1.04\times10^5\;cfu/cm^2$ at site 1, and from $9.4\times10^3\;to\;2.93\times10^5\;cfu/cm^2$ at site 2. Average sixty-five percent of isolates from the blades of Porphyra species were rods and $52.1-82.7\%$ of isolates were Gram-negative. Most isolates showed starch hydrolysis$(68\%)$ on March, but showed Poor utilization of carbon sources and no $H_2S$ production. Dominant genus isolated from the baldes of Porphyra species were Alcaligenes spp., Moraxella spp., on March and Micrococcus spp., Moraxella spp., Corynebacterium spp., on November.

  • PDF

A Study on the Optimum Conditions of Gelatin-Degrading Proteolytic Enzyme Production from Bacillus subtilis B0021 (Bacillus subtilis B0021가 생산하는 Gelatin 분해성 Proteolytic Enzyme 생산의 최적의 연구)

  • 백대헌;이항우복성해
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.374-385
    • /
    • 1995
  • Nutritional requirements and cultural conditions for the production of extracellular gelatin-degrading proteolytic enzyme by Bacillus subtilis B0021 were investigated. Optimum carbon source for proteolytic enzyme production was salicin, but it was substituted by glucose for economical reason. The fermentation medium giving a maximum proteolytic enzyme activity was consisted of 1.5%(w/v) glucose, 2.5%(w/v) yeast extract, and 0.001%(w/v) manganese sulfate and 0.002%(w/v) ferrous sulfate. Proteolytic enzyme activity of B. subtilis B0021 was completely inhibited by 0.5%(w/v) tannic acid. Initial pH was optimal at 7.0 and the enzyme activity in the flask culture usually reached a maximal level after 36 hours of fermentation at $30^{\circ}C$. In the $5\ell$ fermentor fermentation at $30^{\circ}C$, enzyme activity was maximum at 36 hour of cultivation but after this enzyme activity was decreased rapidly. Initial viscosity of 45%(w/v) gelatin(2,800mPas) was decreased rapidly to 96%(mPas) after hydrolysis for 4hr at $40^{\circ}C$ by crude enzyme of B. subtilis B0021.

  • PDF

Characterization of Oil-Degradation Biosurfactant Produced by Bacillus sp. TBM40-3 (Bacillus sp. TBM40-3에 의해 생성된 Biosurfactant의 유류분해 특성)

  • Kim, Sun-Hee;Lee, Sang-Cheol;Yoo, Ju-Soon;Joo, Woo-Hong;Chung, Soo-Yeol;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.170-175
    • /
    • 2004
  • In this paper we studied about Bacillus sp. TBM40-3 producing biosurfactants. The strains were isolated from Taeback Mountain soil and identified as Bacillus sp. by l6S rDNA nucleotides sequence analysis. The TBM40-3 was gram-positive and rod-shaped as observed by field emission scanning microscopy. After the cultivation TBM40-3 in LB broth for 90 h and the surface tension of supernatant was decreased to 29 mN/m. Emulsification activity and stability of crude biosurfactant was measured by using water-immiscible hydrocarbons and oil as substrate. Maximum emulsification activity and stability was obtained from soybean oil. Also, we confirmed that the TBM40-3 producing biosurfactant had an effect on crude oil while showing a superior effect as compared to chemically synthesized surfactants (SDS, Span85, Tween40, Triton X-100). As a result, the Bacillus sp. TBM40-3 producing biosurfactant had potent properties as an emulsifying agent and an emulsion stabilizing agent.