• Title/Summary/Keyword: 생물반응조

Search Result 187, Processing Time 0.022 seconds

Removal Characteristics of COD and Nitrogen by Aerated Submerged Bio-film(ASBF) Reactor (ASBF 생물반응기를 이용한 COD 및 질소 제거특성)

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.997-1002
    • /
    • 2007
  • The objectives of this research are to remove dissolved organic matter and nitrogen compounds by using aerated submerged bio-film(ASBF) reactors in batch systems and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophic and autotrophic bacteria in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. These structures are designed to encourage the growth of a nitrifying bacterial bio-film on a submerged surface. Specially, the effects of cold temperatures on the dissolved organic matter and ammonia nitrogen performance of the ASBF pilot plant was investigated for the batch system. It is anticipated thai the ASBF would be used for a design of biological treatment for removing of dissolved organic matter and nitrogen compounds in new wastewater treatment plants as well as existing wastewater treatment plants.

Finding the operation conditions to minimize nitrous oxide emission from MLE configuration wastewater treatment plant using computer simulation program (컴퓨터 시뮬레이션을 이용한 MLE 공법 하수처리장에서 최저 아산화질소 발생 운전 조건 파악)

  • Jisoo Han;Mincheol Kim;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.19-38
    • /
    • 2023
  • Nitrous oxide, one of the six greenhouse gases from Kyoto protocol, is known to be emitted in biological nitrification and denitrification reactions at wastewater treatment plant. In this study, EQPS which is a computer program that can simulate nitrous oxide gas emission amount at wastewater treatment plants is used. The MLE process which treats wastewater from combined sewer is studied. Operational variables which are MLR, water temperature at reactor and primary clarifier by-pass percentage are changed to define the condition which produces the least amount of nitrous oxide gas. 200 % of MLR, 20 ℃ of water temperature at bioreactor and 15 % of primary clarifier by-pass percentage are shown the least nitrous oxide emission factor. Also, it is found that the deep aeration tank produces less amount of nitrous oxide gas since less air is required to meet oxygen demand in this type of aeration tank.

Kinetics of 2, 4, 6-Trinitrotoluene reduction by zero valent iron (금속 철을 이용한 TNT 환원시의 동역학 산정)

  • 배범한
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.97-108
    • /
    • 1999
  • Reduction 2, 4, 6-trinitrotoluene by zero valent iron was studied in a batch reactor under anoxic conditions. Results showed that the removal of trinitrotoluene (TNT)followed a pseudo-first order reaction and the rate was linearly dependent on the available reactive surfau area of the zero valent iron surface area, resulting a rate constant of 0.0981min$^{1}m$$^{-2}m$. High concentrations of the final product, presumably triaminotoluene which needs to be treated by other means, accumulated in the solution. However , little amount of TAT was extracted from the metal surface by using acetonitrile or phosphate buffered water (pH 7.0). Other common major intermediate in biological TNT degradation, a group of aminodinitrotoluenes, was not detected in the solution. Therefore, it is postulated that the reduction of nitro group by $Fe^0$ occurs simultaneously in all three positions and a TNT reduction model by zero valent iron was suggested.

  • PDF

Continuous Hydrogen Gas production by Immobilized Anaerobic Microorganisms (고정화 혐기성 미생물에 의한 연속적인 수소 생산)

  • 김정옥;김용환;류정용;송봉근;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • Hydrogen producing acidogenic microorganisms were self-immobilized using organic-inorganic hybrid polymer within 5 minutes. During the continuous tratment of synthetic wastewater at a hydraulic retention time of 20 hours, at 37$^{\circ}C$, pH 5.0, the self-immobillized granules were maintained in a stirred tank reactor. The black colored granules gradually became milky. Image analysis showed that the mean diameter of the milky colored granules ranged from 1.5 to 20. mm. The maximum bio-gas procuction rate was 380 ml/L/hy and the concentration of H$_2$was around 50%, while no methane was detected. Granular ECP was extracted and its content was measured to elucidate the role of the organic-inorganic hybrid polymer. Further increases of granule concentration are expected to increase the hydrogen production rate.

Development and Evaluation of the Attrition Coupled Bioreactors for Enzymatic Hydrolysis of Biomass ; Tumbling-Drum Type Bioreactor for Enzymatic Hydrolysis of Cellulose (Biomass의 고효율 효소당화에 적합한 Attrition Coupled Bioreactor 개발에 관한 연구 ; Tumbling Drum Type Bioreactor를 활용한 섬유소 당화)

  • 이용현;조구형;박진서
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.87-93
    • /
    • 1989
  • To develop high dfficiency-low energy consumption attrition coupled bioreactor for enhanced enzymatic hyerolysis of insoluble biomass, a tumbling drum type bioreactor was installed, and its efficiency was evaluated. The effects of drum structure and poerational conditions were investigated. The optimal saccharification at 3L drum was obtained at 8 baffled drum, drum diameter to baffle height ratio of 1:0.05, 100rpm, and addition of 600g of 3mm glass bead per liter. The consumed power for rolling of drum and energy consumption for half digestion of cellulose were measured, and compared with enhanced rate and yield to predict the economic prospect of the process. The tumbling drum type bioreactor seems to have appropriated structure for industrial scale operation, and further investigation for scale-up need to be conducted.

  • PDF

Biological Hydrogen Production from Mixed Waste in a Polyurethane Foam-sequencing Batch Reactor (혼합폐기물 및 폴리우레탄 담체를 충전한 연속회분식공정을 이용한 생물학적 수소생산)

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • This study investigated the effects of polyurethane foam on continuous hydrogen production from mixed wastes. Molasses was co-fermented with non-pretreated sewage sludge in a sequencing batch reactor. The results indicated that the addition of polyurethane foams as a microbial carrier in the reactor mitigated biomass loss at HRT 12 h, while most of the biomass was washed out during the operation period with no carrier. There was a stable hydrogen production rate of $0.4L-H_2/l/d$ in the carrier-sequencing batch reactor. Suspended biomass in the carrier-reactor indicated it possessed the highest specific hydrogen production rate ($241{\pm}4ml-H_2/g\;VSS/d$) when compared to that of biomass on the surface ($133{\pm}10ml-H_2/g\;VSS/d$) or inner carrier ($95{\pm}14ml-H_2/g\;VSS/d$).

A Study on Membrane Fouling Contaminants and Control in Enhanced Sewage Treatment by Submerged Membrane Bioreactor (침지형 분리막을 이용한 오수고도처리 공정의 막오염 원인물질 및 제어에 관한 연구)

  • Park, Chul-Hwi;Yun, Jae-Gon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.619-627
    • /
    • 2004
  • Purposes of this study were to examine closely the extracellular polymeric substances (EPS) which was a membrane fouling contaminant, to control detected EPS by powdered activated carbon (PAC) dosage etc. and to evaluate the possibility of practical reuse facility. With high removal efficiency of general pollutants, when the PAC is added to MBR, improvement of removal efficiency of $COD_{cr}$, and color was expected and treated wastewater can be reused. It was judged that the correlation between EPS and membrane fouling was very high. Carbohydrate and DNA in the EPS were judged to be cause of membrane fouling. If EPS could be controled, not only membrane fouling would be decreased but also operation time would be extended. In experiment of powdered activated carbon (PAC), characteristics of the best PAC for membrane fouling control were the particle size of $7{\mu}m$, lodine Number of 1,050, surface area of peat of $1,150m^2/g$. In lab test, operation time of MBR by PAC dosage of 200mg/gVSS was longer than one of MBR by without PAC dosage. Because EPS, especially carbohydrate and DNA, was controled successfully by PAC, membrane fouling in MBR could be decreased.

Performances of a Sludge Reduction Process Using High Concentration Membrane Bioreactor with Sludge Pretreatment (슬러지 전처리와 고농도 MBR을 이용한 슬러지 감량화 공정연구)

  • Han, Kyu-Chul;Yeom, Ik-Tae;Jung, Woo-Jin;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.559-566
    • /
    • 2003
  • From this research, the performances of a sludge reduction in the sewage sludge aerobic digestion was experimented by using a sludge pretreatment and membrane bioreactor. The submerged plate membrane was used as the solid-liquid separation membrane. After drawing small amounts of sludge in a bioreactor and then doing the alkaline treatment and ozone treatment, the sludge was sent to back to the reactor. The HRT in the reactor was set as 5 days and the operation in the reactor was carried out at the DO of 1mg/L on average. After 100 days of operation in the reactor, it was shown that the reduction efficiency of total solids was more than 83%. Most of volatile solids were removed through mineralization, and the considerable portion of the non-volatile solids was dissolved and then flowed out with the effluent. Only about 16.3% of total solids in the sludge was accmulated in the reactor even without the loss of volatile fraction. Also, by deriving nitrification and denitrification in one reactor simultaneously, more than 90% of nitrogen removal effect was realized and the experiment was run smoothly without fouling of membrane, even in the high concentration of MLSS. Based on this experiment, sludge can be reduced considerably at a low HRT by these two newly suggested approach.

Characteristics of Microfauna in Biological Treatment of Landfil Leachate with Reactor Including Porous Media (다공성 Media가 조여된 반응조를 이용한 매립지 침출수의 호기성 생물학적 처리시 미소생물상의 특성)

  • 홍성철;박연규
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 1996
  • The combined wastewater of municipal landfill leachate and municipal sewage was treated using several sets of bench-scale aerated circulating system including porous media. Investigated items in this experiment were the dominant protozoa and metazoa in this system, the variation of microfauna relationship between operating condition and dominant genera. Also considered the factors determining dominant genera and their role. The outcome of this research is as follows; 1. Aspidisca, Vorticella, Truhellophyllum, Lecane, Philodina, Cyclops were mainly appeared prior to combinding leachate, while Trachelocerca, Bodo, Glaucoma were the dominant genera after combinding leachate. 2. As to metazoa, Nematode and Philodina were not influenced by 5oA leachate mixing ratio, meanwhile Crustacea has high sensitivity for increased leachate mixing ratio and it was not appeared in 5% leachate mixing ratio. 3. The appropriate treatability could'nt be expected at the above 10% leachate mixing ratio. Especially, in the condition of 20% leachate mixing ratio, all of the microfauna were affected damage seriously on their existence. Meanwhile hydraulic retention time, substrate loading rate and slut자e production rate didn't give notable influence on increasing the number of microfauna. 4. As to protozoa, saprozoic and holozoic species were appeared commonly and polysaprobic species were dominent. 5. Filamentous organsms were nearly not affected by leachate mixing. It seems that they could live without any trouble at the 10% leachate mixing ratio, if the substrate is sufficient. 6. Diversity of microfauna had a reducing trernd as the sewage was mixed with leachate.

  • PDF

Influence of Electrochemical Oxidation Potential on Biofilm Structure and Bacterial Dissimilation in Wastewater Treatment Bioreactor (오수처리 반응기에서 생물막 매개체에 부과한 전기화학적 산화전위가 생물막의 구조와 미생물의 대사에 미치는 영향)

  • Na, Byung-Kwan;Park, Doo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • Biofilm media was equipped in two-compartmented wastewater treatment bioreactor which was separated by porcelain septum. DC 2.0 volt of electric potential was charged to anodic (oxidative) biofilm media (ABM) to induce oxidation potential but not to that of carbon (neutral) biofilm media (CBM) that was used for control test. Biofilm structure, biomass variation, Off variation and wastewater treatment efficiency in the bioreactor equipped with ABM (ABM-bioreactor) and CBM (CBM-bioreactor). Time-coursed variation of biofilm structure forming on surface of ABM and CBM was observed by scanning electron microscopy. The biofilm growing on ABM was dispersed on surface and was not completely covered the media but the biofilm growing on CBM was continuously increased and finally covered the media. The ORP of CBM was decreased to 100 mV, which was reciprocally proportional to the biomass growth. However, the ORP of ABM was about 800 mV, which was maintained during operation for about 60 days. The treatment efficiency of COD in the ABM bioreactor was 2 times higher than those in the CBM bioreactor. From these results, we proposed that electrochemical oxidation potential charged to biofilm media may inhibit formation of biofilm extremely condensed and activate bacterial cell metabolism.