• Title/Summary/Keyword: 생리 음향학

Search Result 8, Processing Time 0.02 seconds

Correlation of acoustic features and electrophysiological outcomes of stimuli at the level of auditory brainstem (자극음의 음향적 특성과 청각 뇌간에서의 전기생리학적 반응의 상관성)

  • Chun, Hyungi;Han, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • It is widely acknowledged that the human auditory system is organized tonotopically and people generally listen to sounds as a function of frequency distribution through the auditory system. However, it is still unclear how acoustic features of speech sounds are indicated to the human brain in terms of speech perception. Thus, the purpose of this study is to investigate whether two sounds with similar high-frequency characteristics in the acoustic analysis show similar results at the level of auditory brainstem. Thirty three young adults with normal hearing participated in the study. As stimuli, two Korean monosyllables (i.e., /ja/ and /cha/) and four frequencies of toneburst (i.e., 500, 1000, 2000, and 4000 Hz) were used to elicit the auditory brainstem response (ABR). Measures of monosyllable and toneburst were highly replicable and the wave V of waveform was detectable in all subjects. In the results of Pearson correlation analysis, the /ja/ syllable had a high correlation with 4000 Hz of toneburst which means that its acoustic characteristics (i.e., 3671~5384 Hz) showed the same results in the brainstem. However, the /cha/ syllable had a high correlation with 1000 and 2000 Hz of toneburst although it has acoustical distribution of 3362~5412 Hz. We concluded that there was disagreement between acoustic features and physiology outcomes at the auditory brainstem level. This finding suggests that an acoustical-perceptual mapping study is needed to scrutinize human speech perception.

Sound Metric Design for Quantification of Door Closing Sound Utilizing Physiological Acoustics (생리음향을 이용한 도어 닫힘음의 정량적 평가를 위한 새로운 음질요소의 개발)

  • Shin, Tae-Jin;Lee, Seung-Min;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In previous works, psychoacoustic parameters have been used for objective quantification. However, these parameters do not agree well with subjective assessment. Therefore, the correlation between psychoacoustic parameters and the subjective rating of door closing sounds of sampled cars is low, and it is not sufficient to use psychoacoustic parameters as an objective metric to quantify the sound quality of door closing sounds. In this paper, a new method is proposed to objectively quantify the sound quality based on physiological acoustics and statistical signal processing. The gammatone filter, as a pre-processing, is used in models of the auditory system and kurtosis, which is the fourth-order moment of temporal signal, and is used to extract information about sound quality quantification for door closing sounds. The new metric obtained through the proposed method is highly correlated with subjective rating, and it is successfully applied to the quantification of the sound quality of door closing sounds.

CONCERT HALL ACOUSTICS - Physics, Physiology and Psychology fusing Music and Hall - (콘서트홀 음향 - 음악과 홀을 융합시키는 물리학, 생리학, 심리학 -)

  • 안도요이찌
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.3-8
    • /
    • 1992
  • The theory of subjective preference with temporal and spatial factors which include sound signals arriving at both ears is described. Then, auditory evoked potentials which may relate to a primitive subjective response namely subjective preference are discussed. According to such fundamental phenomena, a workable model of human auditory-brain system is proposed. For eample, important subjective attributes, such as loudness, coloration, threshold of preception of a reflection and echo distrubance as well as subjective preference in relation to the initial time delay gap between the direct sound and the first reflection, and the subsequent reverberation time are well described by the autocorrelation function of source signals. Speech clarity, subjective diffuseness as well as subjective preference are related to the magnitude of inter-aural crosscorrelation function (IACC). Even the caktail party effects may be eplained by spatialization of human brain, i.e., independence of temporal and spatial factors.

  • PDF

Psychoacoustical Analysis and Application of Electroencephalography(EEG) to the Sound Quality Analysis for Acceleration Sound of a Passenger Car (자동차 가속음질에 대한 심리음향적 분석과 뇌파응용 음질 평가)

  • Lee, Seung-Min;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.258-266
    • /
    • 2013
  • This paper presents the correlation between psychological and physiological acoustics for the automotive acceleration sound. The research purpose of this paper is to evaluate the sound quality of acceleration sound of a passenger car based EEG signal. The previous method for the objective evaluation of sound quality is to use sound metrics based on psychological acoustics. This method uses not only psychological acoustics but also physiological acoustics. For this work, the sounds of 7 premium passenger cars are recorded and evaluated subjectively by 33 people. The correlation between the subjective rating and sound metrics is calculated based on physiological acoustics. Finally the correlation between the subjective rating and the EEG signal measured on the brain is also calculated. Throughout these results the new evaluation system for the sound quality on the automotive acceleration sound of a passenger car has been developed based on bio-signal.

Harmfulness of infrasound and wind turbine noise managements (초저주파음의 유해성 및 풍력 발전 소음 관리에 대한 고찰)

  • Kim, Seong-Chan;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • Wind power energy harvesting has a big potential as a future clean energy resource, but accompanies infrasonic noises. The infrasound is difficult to shield and can induce various negative physiological effects. In this study, the Wind Turbine Syndrome (WTS) caused by the infrasonic noises are introduced, and the technical aspects for the measurement and management of the infrasonic noises from wind power plants are discussed.

Preliminary Study on the Effects of Monaural Beating Sound of Tires to Human Body (타이어의 모노럴 비팅음이 인체에 유발하는 영향에 관한 기초 연구)

  • Baek, Kwang-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The effects of monaural beating sound generated according to the number of tire pitch blocks to human body are measured from experiments, and the possibilities of similar positive effects of enhancing alpha waves in human brain are investigated. Due to the requirement of repeatability and measurement conditions, recorded sounds of the tire noise are used for the experiment in a quiet room and human responses are measured using HRV. Although the number of statistically meaningful results was small, it showed that positive human reactions are probably possible.

Subjective response evaluation items for floor impact noise using various impactors (다양한 충격원에 대한 바닥충격음 주관반응 평가항목 분석)

  • Hyeon-Ku Park;Seonhwa Lee;Minjeong Song
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.584-593
    • /
    • 2023
  • This study attempted to develop repetitive impact sources similar to real-life floor impact noise and to find an assessment approach corresponding to this new impact source. The necessity for the development of the new impact source arises from the fact that issues related to floor impact noise in actual residential buildings mainly stem from children running. However, the standard impact sources which have been used for measuring and evaluating floor impact noise are of single-impulse type, which differs from the actual problematic impact sources. The study encompassed 18 evaluation items, and the results suggest that items applicable for assessing floor impact noise include psychological effects (annoying, becoming angry), disturbances to daily life (interference with sleep, disruption of relaxation), and physiological effects (elevated blood pressure). These items can be employed individually and, depending on the type of evaluation for floor impact noise, can be selectively utilized. By doing so, more comprehensive evaluations of auditory experiments in laboratories or assessments of residential noise in living environments related to floor impact noise could be conducted.

Acoustic Property and Clinical Mechanism of the Singing Bowl Sound (싱잉볼 소리의 특성 및 임상적인 기전)

  • Kim, Seong Chan;Hong, Geum Na;Choi, Min Joo
    • Journal of Naturopathy
    • /
    • v.11 no.2
    • /
    • pp.143-151
    • /
    • 2022
  • Background: The singing bowl is a bowl-shaped percussion instrument and is used in meditation and healing programs, but the mechanism of its clinical effects is unclear. Purpose: In this paper, we reviewed the peculiar acoustic property of the singing bowl sound and discussed on physical mechanisms of the clinical effects of the singing bowl sound. Methods: We studied the literature by reviewing it. Results: There are multiple pitches at adjacent frequencies in the singing bowl sound, and they give rise to the beat phenomenon. This results in a solid persisting beating felt in the singing bowl sound. Furthermore, the beat that depends on singing bowls and playing methods includes a rhythm often similar to the frequency band of brain waves (theta wave) observed in meditative states and induces a synchronization phenomenon in which the rhythm activates the brain waves in meditative states. Furthermore, we are to infer that the clinical effect of the singing bowl sound is closely associated with the synchronization of brain waves to the beat rhythm of the singing bowl sound. Conclusion: To clearly understand the clinical mechanism of the singing bowl sound, we suggest further systematic studies on the psychological and physiological responses to the beats of the singing bowl sound.