• Title/Summary/Keyword: 생략복원

Search Result 55, Processing Time 0.024 seconds

Optimizing ELECTRA-based model for Zero Anaphora Resolution (생략복원을 위한 ELECTRA 기반 모델 최적화 연구)

  • Park, Jinsol;Choi, Maengsik;Matteson, Andrew;Lee, Chunghee
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.329-334
    • /
    • 2021
  • 한국어에서는 문장 내의 주어나 목적어가 자주 생략된다. 자연어 처리에서 이러한 문장을 그대로 사용하는 것은 정보 부족으로 인한 문제 난이도 상승으로 귀결된다. 생략복원은 텍스트에서 생략된 부분을 이전 문구에서 찾아서 복원해 주는 기술이며, 본 논문은 생략된 주어를 복원하는 방법에 대한 연구이다. 본 논문에서는 기존에 생략복원에 사용되지 않았던 다양한 입력 형태를 시도한다. 또한, 출력 레이어로는 finetuning layer(Linear, Bi-LSTM, MultiHeadAttention)와 생략복원 태스크 형태(BIO tagging, span prediction)의 다양한 조합을 실험한다. 국립국어원 무형 대용어 복원 말뭉치를 기반으로 생략복원이 불필요한 네거티브 샘플을 추가하여 ELECTRA 기반의 딥러닝 생략복원 모델을 학습시키고, 생략복원에 최적화된 조합을 검토한다.

  • PDF

Valid Conversation Recognition for Restoring Entity Ellipsis in Chat Bot (대화 시스템의 개체 생략 복원을 위한 유효 발화문 인식)

  • So, Chan Ho;Wang, Ji Hyun;Lee, Chunghee;Lee, Yeonsoo;Kang, Jaewoo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.54-59
    • /
    • 2019
  • 본 논문은 대화 시스템인 챗봇의 성능 향상을 위한 생략 복원 기술의 정확률을 올리기 위한 유효 발화문 인식 모델을 제안한다. 생략 복원 기술은 챗봇 사용자의 현재 발화문의 생략된 정보를 이전 발화문으로부터 복원하는 기술이다. 유효 발화문 인식 모델은 현재 발화문의 생략된 정보를 보유한 이전 발화문을 인식하는 역할을 수행한다. 유효 발화문 인식 모델은 BERT 기반 이진 분류 모델이며, 사용된 BERT 모델은 한국어 문서를 기반으로 새로 학습된 한국어 사전 학습 BERT 모델이다. 사용자의 현재 발화문과 이전 발화문들의 토큰 임베딩을 한국어 BERT를 통해 얻고, CNN 모델을 이용하여 각 토큰의 지역적인 정보를 추출해서 발화문 쌍의 표현 정보를 구해 해당 이전 발화문에 생략된 개체값이 있는지를 판단한다. 제안한 모델의 효과를 검증하기 위해 유효 발화문 인식 모델에서 유효하다고 판단한 이전 발화문만을 생략 복원 모델에 적용한 결과, 생략 복원 모델의 정확률이 약 5% 정도 상승한 것을 확인하였다.

  • PDF

Korean Zero Anaphora Resolution Guidelines (한국어 생략어복원 가이드라인)

  • Ryu, Jihee;Lim, Joon-Ho;Lim, Soojong;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.213-219
    • /
    • 2017
  • 말과 글에서 유추가 가능한 정보에 대해서는 사람들이 일반적으로 생략해서 표현하는 경우를 볼 수 있다. 사람들은 생략된 정보를 문맥적으로 유추하여 이해하는 것이 어렵지 않지만, 컴퓨터의 경우 생략된 정보를 고려하지 못해 주어진 정보를 완전하게 이해하지 못하는 문제를 낳게 된다. 우리는 이러한 문제를 생략어복원을 통해 해결할 수 있다고 여기면서 본 논문을 통해 한국어 생략어복원에 대해 정의하고 기술 개발에 필요한 말뭉치 구축 시의 생략어복원 대상 및 태깅 사례를 포함하는 가이드라인을 제안한다. 또한 본 가이드라인에 의한 말뭉치 구축 및 기술 개발을 통해서 엑소브레인과 같은 한국어 질의응답 시스템의 품질 향상에 기여하는 것이 본 연구의 궁극적인 목적이다.

  • PDF

Korean Zero Anaphora Resolution Guidelines (한국어 생략어복원 가이드라인)

  • Ryu, Jihee;Lim, Joon-Ho;Lim, Soojong;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.213-219
    • /
    • 2017
  • 말과 글에서 유추가 가능한 정보에 대해서는 사람들이 일반적으로 생략해서 표현하는 경우를 볼 수 있다. 사람들은 생략된 정보를 문맥적으로 유추하여 이해하는 것이 어렵지 않지만, 컴퓨터의 경우 생략된 정보를 고려하지 못해 주어진 정보를 완전하게 이해하지 못하는 문제를 낳게 된다. 우리는 이러한 문제를 생략어복원을 통해 해결할 수 있다고 여기면서 본 논문을 통해 한국어 생략어복원에 대해 정의하고 기술 개발에 필요한 말뭉치 구축 시의 생략어복원 대상 및 태깅 사례를 포함하는 가이드라인을 제안한다. 또한 본 가이드라인에 의한 말뭉치 구축 및 기술 개발을 통해서 엑소브레인과 같은 한국어 질의응답 시스템의 품질 향상에 기여하는 것이 본 연구의 궁극적인 목적이다.

  • PDF

Case Particle Restoration as Preprocessing for Syntactic Analysis (격조사 복원: 구문분석 전처리)

  • Seo, Hyeong-Won;Kwon, Hong-Seok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.3-7
    • /
    • 2012
  • 본 논문은 구문분석의 전처리로서 생략된 한국어 격조사의 복원 방법을 제안한다. 격조사 생략은 체언과 용언 사이의 관계가 아주 밀접하여 생략하여도 의사 전달에 문제가 없을 경우에 자주 발생한다. 이렇게 생략된 조사는 구문분석의 복잡도를 크게 높일 뿐 아니라 구문 분석의 오류의 원인이 되기도 한다. 본 논문에서는 구문구조 부착 말뭉치를 분석하여 생략된 조사는 그 체언과 용언 사이의 거리가 매우 가깝다는 사실을 발견하였고 이 성질을 이용해서 기계학습 방법을 이용해서 생략된 조사를 복원하는 방법을 제안한다. 본 논문에서는 ETRI 구문구조 부착 말뭉치를 이용해서 실험한 결과, 생략된 조사의 81%를 정확하게 복원할 수 있었다.

  • PDF

Restoring an Elided title for Encyclopedia QA System (백과사전 질의응답을 위한 생략된 표제어 복원에 관한 연구)

  • Lim Soojong;Lee Changi;Jang Myoung-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.541-543
    • /
    • 2005
  • 백과사전에서 정답을 찾기 위해 문장의 구조를 분석하는데 한국어 백과사전은 표제어에 대한 정보를 문장에서 생략한다. 그러나 표제어는 문장에서 주어나 목적어 역할을 하기 때문에 생략된 정보를 복원하지 못 하면 질의에 대한 정답을 제시할 수 없다. 생략된 표제어에 대한 정보를 복원하기 위해서 본 연구에서는 표제어의 의미범주 정보, 격틀, Maximum Entropy 모델을 이용하여 표제어 주어, 표제어 목적어 복원, 미복원 3가지로 인식한다. 표제어 의미범주는 의미 범주에 대해 일정 수준의 복원 성향을 보일 경우 Maximum Entropy 정보를 창조하였고 격틀을 이용하여 복원 여부를 결정한다. 만약 표제어의 의미범주 정보, 격틀을 이용하여도 복원 여부를 결정하지 못할 경우에는 Maximum Entropy 모델에 기반한 통계 기법을 적용하여 복원 여부를 결정한다. 그리고 각각 방법의 단점을 보완하기 위해서 규칙에 해당하는 표제어 의미범주 정보와 격틀 정보에는 통계 모델인 ME 모델을 보완하여 사용한다.

  • PDF

Efficient Summarization Using Zero Anaphora Resolution (한국어 영 대용어 처리를 통한 문서요약의 성능 향상)

  • 구상옥;전명희;김미진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.555-557
    • /
    • 2003
  • 본 논문에서는 보다 간결한 요약문을 생성하기 위하여. 문장 전체를 추출하는 것이 아니라 문장의 일부분을 요약으로 추출한다. 그런데 한국어의 경우 문장 구조상 반복되는 문장성분을 생략하는 영 대용 문제가 빈번하게 발생하기 때문에, 문장의 일부분 추출시. 생략된 성분을 복원하지 않으면 요약문의 의미가 불완전하고 모호해 질 수 있다. 본 논문에서는 문서 안에서 중요한 부분을 추출한 뒤, 생략된 성분을 복원하여 요약문의 가독성을 놓이는 방법을 제안한다. Luhn의 방법을 이용하여 문서내의 중요 클러스터를 추출하였고, 기존의 문장분할 및 영 대용어 복원 알고리즘을 사용하여 생략된 성분을 복원하였다. 본 논문에서 제안된 요약 방법은 신문기사와 같이 문장의 수는 많지 않고, 문장의 길이가 비교적 긴 문서를 짧은 문장으로 요약하는 데 효율적이다.

  • PDF

Restoring Encyclopedia Title Words Using a Zero Anaphora Resolution Technique (무형대용어 해결 기술을 이용한 백과사전 표제어 복원)

  • Hwang, Min-Kook;Kim, Young-Tae;Ra, Dongyul;Lim, Soojong
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.65-69
    • /
    • 2014
  • 한국어 문장의 경우 문맥상 추론이 가능하다면 용언의 격이 생략되는 현상 즉 무형대용어 (zero anaphora) 현상이 흔히 발생한다. 무형대용어를 채울 수 있는 선행어 (명사구)를 찾는 문제는 대용어 해결 (anaphora resolution) 문제와 같은 성격의 문제이다. 이러한 생략현상은 백과사전이나 위키피디아 등 백과사전류 문서에서도 자주 발생한다. 특히 선행어로 표제어가 가능한 경우 무형대용어 현상이 빈번히 발생한다. 백과사전류 문서는 질의응답 (QA) 시스템의 정답 추출 정보원으로 많이 이용되는데 생략된 표제어의 복원이 없다면 유용한 정보를 제공하기 어렵다. 본 논문에서는 생략된 표제어 복원을 위해 무형대용어의 해결을 기반으로 하는 시스템을 제안한다.

  • PDF

Restoring Functional Word and Noun-Verb Syntactic Relations for Korean Compound Noun Analysis (단위 명사간 보-술 관계를 이용한 한국어 복합 명사의 문장 복원)

  • Yang, Seong-Il;Kim, Young-Kil;Seo, Young-Ae;Park, Eun-Jin;Ra, Dong-Yul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.694-695
    • /
    • 2007
  • 한국어 문장의 구성은 명사, 동사와 같은 내용어와 조사, 어미와 같은 기능어로 크게 나눌 수있다. 문장의 핵심적인 의미 전달은 내용어에 의해 이루어지며, 한국어 명사구의 경우 잦은 기능어의 생략으로 명사 나열에 의한 복합 명사가 발생된다. 이렇게 발생되는 복합 명사를 구성하는 단위 명사들은 일부 문장 성분을 생략시켜 발생된 것으로, 생략 성분의 복원에 의해 본래의 문장 형태를 추정할 수 있다. 한국어 복합 명사의 경우, 생략되는 문장 성분은 대부분 접사, 조사와 같은 기능어로 국한되며, 기능어의 복원은 단위 명사 간의 격 관계와 의미 관계를 분석하여 이루어질 수 있다. 본 논문에서는 단위 명사간의 보-술 관계를 이용하여 복합 명사를 구성하는 단위 명사 간의 의존 관계를 추정하고, 추정된 의존 관계에 의해 생략된 격조사와 용언화 접사를 복원하는 방법을 제안한다. 구조 분석에서 사용되는 의미 격틀에 의해 결정되는 격 관계는 격조사와 용언화 접사의 복원을 결정하며, 올바른 본래의 문장 표현 복원을 위해 관형격 조사와 관형격 어미를 비롯한 특별한 형태의 복원은 통계 정보와 휴리스틱 규칙으로 결정한다.

Discourse Analysis for Robust Spoken Dialogue System (강건한 음성 대화 시스템을 위한 담화분석 기술)

  • Lee, Chung-Hee;Jang, Myung-Gil;Oh, Hyo-Jung;Seo, Young-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1005-1009
    • /
    • 2010
  • Elliptical and anaphoric utterances occur frequently during spoken dialogue. Because discourse analysis rests on the basic premise that linguistic items cannot be understood without reference to the context, ellipsis and anaphora resolution plays an important role in discourse analysis. In this paper, we present a spoken dialogue system improving the robustness at dialogue level based on discourse analysis, such as anaphora and ellipsis resolution. The applicability and effectiveness of the proposed method is evaluated in the TV domain.