• Title/Summary/Keyword: 샘플치 제어

Search Result 42, Processing Time 0.029 seconds

Sampled-data Fuzzy Controller for Network-based Systems with Neutral Type Delays (뉴트럴 타입 시간 지연을 갖는 네트워크 기반 시스템의 샘플치 퍼지 제어기 설계)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • This paper presents the stability analysis and design for a sampled-data fuzzy control system with neutral type of time delay, which is formed by a nonlinear plant and a sampled-data fuzzy controller connected in a closed loop. The sampling activity and neutral type of time delay will complicate the system dynamics and make the stability analysis much more difficult than that for a pure continuous-time fuzzy control system. Based on the fuzzy-model-based control approach, LMI(linear matrix inequality)-based stability conditions are derived to guarantee the nonlinear networked system stability. An application example will be given to show the merits and design a procedure of the proposed approach.

Sampled-Data Controller Design for Nonlinear Systems Including Singular Perturbation in Takagi-Sugeno Form (특이섭동을 포함한 타카기 - 수게노 형태의 비선형 시스템을 위한 새로운 샘플치 제어기의 설계기법 제안)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • This paper discusses a sampled-data controller design problem for nonlinear systems including singular perturbation. The concerned system is assumed to be modeled in Takagi--Sugeno (T--S) form. By introducing a novel Lyapunov function and an identity equation, the stability of the sampled-data closed-loop dynamics of the singularly perturbed T--S fuzzy system is analyzed. The design condition is represented in terms of linear matrix inequalities. A few discussions on the development are made that propose future research topics. Numerical simulation shows the effectiveness of the proposed method.

Effective Decentralized Sampled-Data Control for Nonlinear Systems in T-S' Form: Overlapping IDR Approach (타카기-수게노 형태의 비선형 시스템의 효율적 분산 샘플치 제어: 중복 지능형 디지털 재설계 접근법)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.94-99
    • /
    • 2012
  • This paper discusses a decentralized sampled-data control problem for large-scale nonlinear systems. The system is represented in Takagi-Sugeno's form. Next, we design a decentralized analog controller based on the overlapping decomposition technique. The final step is to apply the intelligent digital redesign scheme for converting the analog controller into the sampled-data one. Design condition is represented in terms of linear matrix inequalities. A simulation result is provided for the effectiveness of the proposed design method.

A Design of the Multirate Digital Controller using Sampled Data $H_2$ Optimization (샘플치 $H_2$ 최적화를 이용한 멀티레이트 디지털 제어기 설계)

  • 박종우;이상철;곽칠성
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.271-274
    • /
    • 2001
  • In this paper, optimal digital design is studied within the framework of sampled-data control theory. In particular, multirate discretization of analog controller is considered using an H$_2$optimality criterion. Solutions are obtained via multirate H$_2$optimization with a causality constraint due to the multirate structure. In design example, the comparison of the proposed methods is made with the conventional discretization methods, and demonstrate the superiority of the multirate design method.

  • PDF

Robust Sampled-Data Controller Design for a Flexible Beam (유연한 빔을 위한 강인한 샘플치 제어기의 설계)

  • Choe, Y.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-72
    • /
    • 2005
  • A new approach is presented to design a robust sampled-data controller for an experimental flexible beam carrying an unknown payload at its free end. The purpose of this paper is to move the free end of the beam to a desired position in the specified time under vibration suppression. We derive a transfer function nominal model for the beam and quantitative description of model uncertainties based on experimentally obtained frequency response data. Robust controllers are designed by applying the sampled-data $H_{\infty}$ control and ${\mu}m-theory$, in which two types of uncertainties, structured and unstructured uncertainties, are adopted for satisfactory performance in terms of hinge position regulation and vibration damping, besides obviously asymptotic stability. The effectiveness of the proposed method is confirmed through simulation and experimentation.

  • PDF

The Sampled-Data $H{\infty}$ Problem: Applying the Discretization Method via a Closed-Loop Expression of Worst-Case Disturbance (샘플치 $H{\infty}$ 문제: 최악의 외란의 폐경로 표현을 통한 이산화 기법 적용)

  • 조도현;박진홍
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.7
    • /
    • pp.967-974
    • /
    • 2001
  • This paper aims at deriving an equivalent finite dimensional discrete-time system for $H{\infty}$ type problem for sampled-data control systems. A widely used approach is based on the lifting technique, but it needs somewhat complicate computation. Instead, this paper derives an equivalent finite-dimensional discrete-time system directly from a description of the sampled-data system which is achieved via a closed-loop expression of the worst-case intersample disturbance.

  • PDF

Output regulation of nonlinear sampled-data systems (비선형 샘플치 시스템의 출력조절)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.391-394
    • /
    • 1996
  • The effects of time-sampling on nonlinear output regulation problem is investigated. Output regulatedness is preserved under time sampling as in linear systems, however output regulatability is not robust with respect to time-sampling, and thus one needs to seek an approximate nonlinear sampled-data output regulator.

  • PDF

Speed Control of DC Motor Using Deadbeat Response Method with Consideration of Saturation (포화를 고려한 직류전동기의 유한시간 정정 응답제어)

  • ;;Shigeru Okuma
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.4
    • /
    • pp.52-59
    • /
    • 1991
  • 본 논문은 유한시간 정정응답 제어이론을 이용한 직류전동기의 속도제어에 대하여 논하였다. 유한시간 정정응답 제어계는 이산시간제어를 적용하므로 제어량 포화현상과 검출지연 문제가 발생하여 계통의 불안정을 초래한다. 이러한 문제를 해결하기 위하여 포화상태에서도 고속응답이 가능하도록 예측제어를 적용한 보상기를 제안한다. 실험 결과 지령치가 포화되지 않은 상태에서는 1샘플링시간으로 정정할 수 있었다. 지령치가 포화한 상태에서는 포화로부터 벗어난 후 1샘플링시간으로 정정할 수 있었다. 또한 예측제어를 적용하므로써 과도시의 오우버슈우트가 억제된 고속정정이 가능함을 알 수 있었다.

  • PDF

Intelligent Digital Redesign of Observer-Based Output-Feedback Fuzzy Controller Using Delta Operator (델타 연산자를 이용한 관측기 기반 출력 궤환 퍼지 제어기의 디지털 재설계)

  • Moon, Ji Hyun;Lee, Ho Jae;Kim, Do Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.700-705
    • /
    • 2012
  • This paper addresses an intelligent digital redesign (IDR) technique for observer-based output-feedback control systems, in order to efficiently convert a pre-designed Takagi-Sugeno fuzzy model-based analog controller into a sampled-data one in the sense of state matching. A delta operator is used to get an asymptotic relation between the analog and the sampled-data control systems. The IDR problem is viewed as a minimization problem of the norm distances between linear operator to be matched. The condition is represented as linear matrix inequalities, and the separation principle on the IDR is shown.

Sampled-Data Control of Formation Flying using Optimal Linearization (최적 선형화 기반 디지털 재설계 기법을 이용한 편대 비행의 샘플치 제어)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • This paper proposes an efficient sampled-data controller design technique for formation flying. To deal with the nonlinearity in the formation flying dynamics and to obtain a linear, rather than affine, model, we utilize the optimal linearization technique. The digital redesign technique is then developed based on the optimal linear model and formulated in terms of linear matrix inequalities. Simulation results show the advantage of the proposed methodology over the conventional controller emulation technique.