• Title/Summary/Keyword: 색상 필터

Search Result 167, Processing Time 0.03 seconds

Depth Map Upsampling via Markov Random Field without Color Boundary Noise Effect (컬러경계 잡음 현상을 제거한 Markov 랜덤 필드 기반 깊이맵 업샘플링)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.101-104
    • /
    • 2014
  • 3차원 영상 제작을 위해서는 장면의 색상 영상과 함께 깊이 정보가 필요하다. 일반적으로 깊이를 측정하는 TOF 카메라에 의해 획득된 깊이 영상은 컬러 영상에 비해 매우 작은 해상도의 영상을 갖게 되는 문제가 있다. 따라서 색상 영상과 함께 3차원 영상 제작에 깊이 영상을 사용하기 위해서는 저해상도 깊이 영상의 업샘플링 방법이 필요하다. 특히 컬러 영상에서 사물 간의 경계에 해당하는 부분에서 색상 차이를 인지하지 못하여 깊이 맵을 부적절하게 처리하게 되는 경우가 발생한다. 본 논문에서는 색상 영상에서 경계부분에 해당하는 영역을 이용하여 저해상도 깊이 영상을 업샘플링 하는 방법을 제안한다. 깊이 영상을 업샘플링 할 때 중요하게 다루어야 할 경계 부분을, 고해상도 색상 영상과 저해상도 깊이 영상을 이용하여 찾아낸다. 색상 경계 부분을 고려하여 깊이 영상 업샘플링을 위한 에너지 함수를 MRF를 이용하여 모델링하고, 신뢰 확산(belief propagation)방법을 이용하여 에너지 함수 최적화를 수행한다. 제안한 방법은 기존의 다른 에너지 함수나 필터 기반 업샘플링 방법보다 우수한 성능을 나타내었다.

  • PDF

An Automatic Object Extraction Method Using Color Features Of Object And Background In Image (영상에서 객체와 배경의 색상 특징을 이용한 자동 객체 추출 기법)

  • Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.459-465
    • /
    • 2013
  • This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.

bat tracking in baseball broadcasting using CAMshift and Kalman filter (CAMshift와 칼만필터를 이용한 야구 중계화면에서의 배트 추적)

  • Jo, Kyeong-min;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.695-698
    • /
    • 2015
  • In this paper proposes bat tracking in baseball broadcasting using CAMshift and Kalman filter. The bat is changing fast during the swing, the shape also continues to rotate. For this reason, to apply the CAMshift to self adjust the size of the search window in order to use the color information to the invariant of the bat. Because it uses the color information if there are objects of similar color to the background because of the interruption on the track narrows the search range in range of motion detection by using the MHI(Motion History Image). By applying a Kalman filter, limit changing on the size of the search window, and it can be obtained higher track accuracy. But, this proposed method was limited color change by light.

  • PDF

Normalized Region Extraction of Facial Features by Using Hue-Based Attention Operator (색상기반 주목연산자를 이용한 정규화된 얼굴요소영역 추출)

  • 정의정;김종화;전준형;최흥문
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.815-823
    • /
    • 2004
  • A hue-based attention operator and a combinational integral projection function(CIPF) are proposed to extract the normalized regions of face and facial features robustly against illumination variation. The face candidate regions are efficiently detected by using skin color filter, and the eyes are located accurately nil robustly against illumination variation by applying the proposed hue- and symmetry-based attention operator to the face candidate regions. And the faces are confirmed by verifying the eyes with the color-based eye variance filter. The proposed CIPF, which combines the weighted hue and intensity, is applied to detect the accurate vertical locations of the eyebrows and the mouth under illumination variations and the existence of mustache. The global face and its local feature regions are exactly located and normalized based on these accurate geometrical information. Experimental results on the AR face database[8] show that the proposed eye detection method yields better detection rate by about 39.3% than the conventional gray GST-based method. As a result, the normalized facial features can be extracted robustly and consistently based on the exact eye location under illumination variations.

Color Image Segmentation Using Characteristics of Human Visual System (인간 시각 시스템의 특성을 이용한 칼라 영상 분할)

  • 박영식
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.272-276
    • /
    • 2002
  • 본 논문은 영역을 병합할 때 두 영역의 색상 차를 영역 병합의 제한 조건으로 사용하는 칼라 영상 분할 기법을 제안하였다. 이는 먼저 영역의 경계선 정보를 잘 보존하기 위해서 RGB 공간상에서 수리형태학 필터와 변형된 워터쉐드 알고리즘을 이용하여 칼라 영상을 과분할 한다. 그리고 영역 간의 색상 차를 제한 조건으로 사용하는 영역 병합 과정을 반복 수행하여 칼라 영상의 분할 결과를 얻는다. 이는 인간 시각 시스템이 색상, 채도, 명도의 형태로 색을 구분하는 것을 기반으로 한다. 명도가 낮지 않는 경우에 색차 보다 색상 차가 중요한 요소로 작용하기 때문에 이를 영역 병합의 제한 조건으로 사용한다. 실험결과에서 제안된 칼라 영상 분할 기법은 다양한 칼라 영상에 대하여 적은 개수의 영역으로 동일한 색상을 가지는 영역의 경계선을 유지하는 효율적인 분할을 보임을 확인하였다.

  • PDF

Color Analysis of Clothing in Product Images for User's Color Preference-Based Recommendation System (사용자의 색상 선호 기반 추천 시스템을 위한 상품 이미지 속 의류 색상 분석)

  • Roh, Eunjin;Park, Sangwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.643-645
    • /
    • 2022
  • 많은 온라인 쇼핑몰에서 색상 기반 필터링 서비스나 추천 시스템을 제공하지만, 수동 분류는 많은 시간이 들고 오류 위험이 있다. 본 연구의 실험에서는 먼저 분석할 의류 이미지를 실루엣 분석으로 수행한 경우와 수행하지 않는 경우의 k-평균 군집화 알고리즘으로 가장 우세한 색상 군집의 중심값을 도출하는데, 만약 군집 개수가 2개 이상이면 보다 큰 군집의 중심값만을 고려한다. 이 중심값을 이용해 사전 학습한 k-최근접 이웃 알고리즘으로 색상 클래스를 분류한다. 실험 결과 실루엣 분석을 수행하지 않은 k-평균 군집화 알고리즘을 사용한 분류 방식이 정확도와 수행 시간 모두 매우 준수하였으나, 배경색이 존재하여 의류 색 분석에 영향을 줄 수 있는 경우 잘못 분류한다는 문제도 있다.

Contents Adaptive 2D FIR Filters Design for Subpixel Rendering (부화소 랜더링을 위한 내용적응형 2 차원 필터 설계)

  • Nam, Yeon Oh;Choi, Dong Yoon;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.107-108
    • /
    • 2014
  • 부화소 기반 영상 축소기법은 각각의 부화소를 조절함으로써 픽셀 기반 영상 축소기법보다 해상도를 향상시킬 수 있는 방법이다. 그러나 부화소에 의한 해상도의 증가는 종종 색상정보의 왜곡을 발생시킨다. 부화소 랜더링의 주요과제는 선명도를 유지함과 동시에 색조왜곡현상을 억제하는 것이다. 선행연구들은 부화소랜더링을 위해 1 차원 혹은 2 차원 필터를 최적화 하였지만, 지역적인 특성을 고려하지 않았기 때문에 출력영상의 화질이 저하되는 현상이 발생한다. 본 논문은 위와 같은 문제를 해결하기 위해 내용적응형 2D FIR 필터를 제작방법을 제안한다. 제안필터는 충분한 수의 저해상도 패치와 고해상도 패치 쌍을 이용하여 임의의 고해상도 패치로부터 고화질의 저해상도 패치를 만들기 위한 최적의 내용적응형 2D FIR 필터를 학습한다. 학습된 필터에 의한 실험결과 제안하는 필터가 종례기법들 보다 색조왜곡현상이 현저히 줄어들고, 출력영상의 선명도를 유지함을 보여준다.

  • PDF

A Black and White Comics Generation Procedure for the Video Frame Image using Region Extension based on HSV Color Model (HSV 색상 모델과 영역 확장 기법을 이용한 동영상 프레임 이미지의 흑백 만화 카투닝 알고리즘)

  • Ryu, Dong-Sung;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.12
    • /
    • pp.560-567
    • /
    • 2008
  • In this paper, we discuss a simple and straightforward binarization procedure which can generate black/white comics from the video frame image. Generally, the region of human's skin is colored white or light gray, while the dark region is filled with the irregular but regular patterns like hatching in most of the black/white comics. Note that it is not enough for simple threshold method to perform this work. Our procedure is decoupled into four processes. First, we use bilateral filter to suppress noise color variation and reserve boundaries. Then, we perform mean-shift segmentation for each similar colored pixels to be clustered. Third, the clustered regions are merged and extended by our region extension algorithm considering each color of their regions. Finally, we decide which pixels are on or off using by our dynamic binarization method based on the HSV color model. Our novel black/white cartooning procedure was so successful to render comic cuts from a well-known cinema in a resonable time and manual intervention.

Fuzzy-Model-based Emotion Recognition Using Advanced Face Detection (향상된 얼굴 인식 기술을 이용한 퍼지 모델 기반의 감성인식)

  • Yoo, Tae-Il;Kim, Kwang-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2083-2084
    • /
    • 2006
  • 본 논문에서는 조명에 변화에 강인하고 기존의 퍼지 색상 필터보다 정확하고 빠른 얼굴 감지 알고리즘 이용하여 얼굴을 인식하고 얼굴로부터 특징점(눈, 눈썹, 입)틀을 추출하고 추출된 특징점을 이용하여 감성을 판별하는 방법을 제안한다. 향상된 얼굴 인식 기술이란 퍼지 색상 필터의 단점이 영상의 크기와 성능에 따라 처리속도가 느려지는 것을 보완하기 위하여 최소한의 규칙을 사용하여 얼굴 후보 영역을 선별 적용하여 얼굴영역을 추출하는 기법을 말한다. 이렇게 추출된 얼굴영역에서 감정이 변화 할 때 가장 두드러지게 변화를 나타내는 눈, 눈썹 그리고 입의 특징점을 이용하여 감성을 분류한다.

  • PDF

Efficient Face Detection using Adaboost and Facial Color (얼굴 색상과 에이다부스트를 이용한 효율적인 얼굴 검출)

  • Chae, Yeong-Nam;Chung, Ji-Nyun;Yang, Hyun-S.
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.7
    • /
    • pp.548-559
    • /
    • 2009
  • The cascade face detector learned by Adaboost algorithm, which was proposed by Viola and Jones, is state of the art face detector due to its great speed and accuracy. In spite of its great performance, it still suffers from false alarms, and more computation is required to reduce them. In this paper, we want to reduce false alarms with less computation using facial color. Using facial color information, proposed face detection model scans sub-window efficiently and adapts a fast face/non-face classifier at the first stage of cascade face detector. This makes face detection faster and reduces false alarms. For facial color filtering, we define a facial color membership function, and facial color filtering image is obtained using that. An integral image is calculated from facial color filtering image. Using this integral image, its density of subwindow could be obtained very fast. The proposed scanning method skips over sub-windows that do not contain possible faces based on this density. And the face/non-face classifier at the first stage of cascade detector rejects a non-face quickly. By experiment, we show that the proposed face detection model reduces false alarms and is faster than the original cascade face detector.