The Transactions of the Korea Information Processing Society
/
v.7
no.12
/
pp.3995-4003
/
2000
This paper describes a method that extracts the region of car-licence plates in color images of private and commercial cars. To extract car-licence plates, we use the feature that car-licence plate regions have regular colors according to the kinds of cars. In this paper, we propose the method that combines H component of HSI color model and Q component of YIQ color model. To improve efficiency of the process, we cxplore lines ill a car image by a regular interval in a bottom-up style. As a result, the extraction rates by only H-component. only by Q- component. and by combined Hand Q, are 53.6%, 82.1%, and 94.6% respectively.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.11a
/
pp.205-207
/
2009
디지털 카메라를 이용한 영상 취득은 일반적으로 한 픽셀에서 세 가지 색상(적색, 녹색, 청색)의 값을 얻는 것을 목표로 한다. 하지만, 비용의 문제로 한 픽셀에서 한 가지의 색상만을 얻어 나머지 두 색상을 복원하는 방식을 널리 사용한다. 이를 demosaicking이라 하는데, 이 과정에는 1)각 색상 영상 내의 상관관계와 2)세 가지 색상 사이의 상관관계가 동시에 이용된다. 본 논문에서는 이 두 가지 상관관계를 이용하여 각 채널의 고주파 성분과 밝기 성분의 고주파 성분을 반복적으로 향상시키는 방법을 제안하였다. 첫 번째 단계에서는 밝기 성분을 이용하여 각 채널의 고주파 성분을 강화하고, 두 번째 단계에서 관측값을 이용하여 밝기 성분의 고주파 성분을 복원한다. 제안된 방법이 기존 방법과 주관적인 방법과 객관적인 방법으로 비교하여 우수함을 보인다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.455-457
/
1998
동영상에서의 얼굴 영역 추출은 헤드 제스처 인터페이스를 위한 기본적이고 필수적인 기법이다. 얼굴 영역 추출을 위해서는 색상 정보와 차영상을 이용한 방법이 많이 사용되며, 색상 정보를 이용하는 방법에는 HSI의 H(hue)성분과 YIQ의 I(in-phase)성분이 널리 알려져 있다. 본 논문에서는 먼저 얼굴 색상에 해당하는 각 색상 성분의 구간을 탐색하고, 다음으로 각 색상 정보를 이용한 얼굴 영역 검출의 정확도를 비교 실험한다. 또한, 색상 정보와 차영상을 결합한 방법에 대해서도 얼굴 영역 검출의 정확도를 비교한다. 실험 결과, YIQ의 경우 구간 130~150, HSI의 경우 구간 0~20에서 얼굴색을 잘 표현하는 것으로 나타났다. 얼굴 영역 검출의 정확도 측면에서는, 색상 정보만을 이용한 실험의 경우 YIQ가 HSI에 비해 약 10%의 향상된 성능을 보였고, 색상 정보와 차영상을 결합한 경우에서도 YIQ가 약 5%의 향상된 성능을 보였다.
Moving object segmentation is an essential technique for various video surveillance applications. The result of moving object segmentation often contains shadow regions caused by the color difference of shadow pixels. Hence, moving object segmentation is usually followed by a shadow elimination process to remove the false detection results. The common assumption adopted in previous works is that, under the illumination variation, the value of chromaticity components are preserved while the value of intensity component is changed. Hence, color transforms which separates luminance component and chromaticity component are usually utilized to remove shadow pixels. In this paper, various color spaces (YCbCr, HSI, normalized rgb, Yxy, Lab, c1c2c3) are examined to find the most appropriate color space for shadow elimination. So far, there have been some research efforts to compare the influence of various color spaces for shadow elimination. However, previous efforts are somewhat insufficient to compare the color distortions under illumination change in diverse color spaces, since they used a specific shadow elimination scheme or different thresholds for different color spaces. In this paper, to relieve the limitations of previous works, (1) the amount of gradients in shadow boundaries drawn to uniform colored regions are examined only for chromaticity components to compare the color distortion under illumination change and (2) the accuracy of background subtraction are analyzed via RoC curves to compare different color spaces without the problem of threshold level selection. Through experiments on real video sequences, YCbCr and normalized rgb color spaces showed good results for shadow elimination among various color spaces used for the experiments.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.589-591
/
2002
본 연구에서는 영상안에서의 중요한 객체정보를 검출하기 위한 전처리 과정으로 효율적인 색상정보 정규화에 의한 영역분석 방법을 제안한다. 다중색상 정규화는 기존의 화소내 색상성분간의 정규화와 모든 화소에 대한 성분별 정규화를 복합적으로 사용함으로써, 객체의 영역들이 갖는 고유 색상성분의 분포를 좀더 특정 공간에 집중시키고 영상분할을 용이하게 한다. 이러한 방법의 효과를 입증하기 위해 가상의 입력영상을 제작하여 기존의 알고리즘과 본 논문에서의 방법을 함께 적용, 비교평가한다.
Proceedings of the Korea Multimedia Society Conference
/
2000.11a
/
pp.218-223
/
2000
영상에서 색상은 조명과 물체의 반사 특성에 의해 걸정되므로고 정확한 조명성분 추출을 통해 물체 고유의 색상을 복원할 수 있다. 물체 색상과 하이라이트 색상의 분포와 이들간의 관계를 잘 반영하여 모델링한 Dichromatic 반사 모델에서는, 3차원 RGB 공간에서의 하이라이트(highlight) 영역에 의한 클러스터 분포형상으로부터 표면반사벡터를 구해 이것을 조명벡터로 결정하였다. 그러나, 표면반사벡터의 방향은 물체색상의 영향을 받아 실제 조명벡터와 동일한 방향을 나타내지 못한다는 것을 실험을 통해 알 수 있었다. 실제적으로 하이라이트영역에 대한 클러스터는 물체 색상으로부터 조명색상에 근접한 방향으로 형성되며, 조명벡터로는 글러스터의 최대값으로 향하는 것을 취하는 것이 보다 정확하다는 특성이 있음을 확인하였다. 본 논문에서는 여러 가지 실험을 통해 이러한 특성이 타당함을 제시하고, 그래픽반사모델을 이용하여 하이라이트 색상에 대한 새로운 해석 방법을 제시한다.
Journal of Satellite, Information and Communications
/
v.8
no.3
/
pp.52-57
/
2013
This paper describes the color comparison analysis of flame in each standard color model in order to propose the optimal color model for image processing based flame detection algorithm. Histogram intersection values were used to analyze the separation characteristics between color of flame and color of non-flame in each standard color model which are RGB, YCbCr, CIE Lab, HSV. Histogram intersection value in each color model and components is evaluated for objective comparison. The analyzed result shows that YCbCr color model is the most suitable for flame detection by average HI value of 0.0575. Among the 12 components of standard color models, each Cb, R, Cr component has respectively HI value of 0.0433, 0.0526, 0.0567 and they have shown the best flame separation characteristics.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.850-852
/
2005
차량을 포함하는 임의의 영상에서 번호판 추출은 다양한 조명조건 및 배경, 촬영 각도, 번호판 종류 등의 요인으로 인해 고도의 영상처리 과정을 필요로 한다. 본 논문에서는 실제 환경에서 발생할 수 있는 이러한 요인들에 대해 강건한 번호판 추출 방법을 제안한다. 제안하는 방법은 입력영상의 RGB 성분들을 색상성분과 영암성분으로 분리할 수 있는 칼라모델 HSI로 변환하고 H(hue)와 S(saturation)성분을 이용하여 번호판의 배경색상을 고려한 칼라 퍼지지도를 구성한다. 또한, I(intensity)성분을 이용하여 에지밀도를 추출하고 에지밀도 지도에 기반한 영역분리 퍼지지도를 생성한다. 마지막으로, 후보영역 탐색을 위해 칼라 퍼지지도와 영역분리 퍼지지도를 결합하고, 연결성분 해석(Connected Component Analysis)을 통해 ROI(Region Of Interest)를 추출한다. 제안하는 방법의 유효성 검증을 위해 조명 및 촬영 각도에 제한을 거의 두지 않고 촬영된 차량 영상 410장을 실험 영상으로 사용하였다. 실험 결과에서는 $97.1\%$의 효과적인 추출 성공률을 볼 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.261-264
/
2006
본 논문은 조명의 변화가 심한 연속영상에서 동적객체를 안정적으로 추출하기 위하여 색상강도 및 기울기 기반 배경모델을 구축하고 이를 이용하여 입력영상으로부터 동적 객체의 윤곽선을 안정적으로 추출하는 기법을 제시한다. 제안기법에서는 우선, 동적객체가 포함되지 않은 배경 연속영상의 HSI 컬러공간에서 색상(Hue) 강도와 색상 기울기에 대한 배경모델을 생성한다. 실시간으로 입력되는 동적 객체를 포함한 연속영상에 대하여 각 화소에 대한 색상(Hue)성분을 추출하고 이웃 화소와의 색상성분에 대한 기울기 크기를 계산한다. 이를 기구축된 배경모델과 비교하여 그 차분값이 일정 임계값을 초과하는 경우 동적객체의 윤곽선으로 판별한다. 제안 기법은 극심한 조명 변화에 강건하게 동적 객체의 윤곽정보를 실시간 추출하였다. 본 논문에서는 기존 RGB 기반 배경 모델링 기법을 적용한 경우와의 비교 실험을 통하여 제안 기법의 안정성을 보였다.
Recently, studies of image analysis, as the preprocessing stage for medical image analysis or image retrieval, are actively carried out. This paper intends to propose a way of utilizing color components for image retrieval. For image retrieval, it is based on color components, and for analysis of color, CLCM (Color Level Co-occurrence Matrix) and statistical techniques are used. CLCM proposed in this paper is to project color components on 3D space through geometric rotate transform and then, to interpret distribution that is made from the spatial relationship. CLCM is 2D histogram that is made in color model, which is created through geometric rotate transform of a color model. In order to analyze it, a statistical technique is used. Like CLCM, GLCM (Gray Level Co-occurrence Matrix)[1] and Invariant Moment [2,3] use 2D distribution chart, which use basic statistical techniques in order to interpret 2D data. However, even though GLCM and Invariant Moment are optimized in each domain, it is impossible to perfectly interpret irregular data available on the spatial coordinates. That is, GLCM and Invariant Moment use only the basic statistical techniques so reliability of the extracted features is low. In order to interpret the spatial relationship and weight of data, this study has used Principal Component Analysis [4,5] that is used in multivariate statistics. In order to increase accuracy of data, it has proposed a way to project color components on 3D space, to rotate it and then, to extract features of data from all angles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.