• Title/Summary/Keyword: 새만금 내부 개발

Search Result 15, Processing Time 0.019 seconds

Analysis System Implementation based IoT for Water Quality Improvement in DIPLDRM Lake (내부건식기법 호소(湖沼)의 수질개선을 위한 IoT 기반 분석 시스템 구현)

  • Kim, ui-jin;Lee, hong-ro
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.39-40
    • /
    • 2016
  • 건식내부굴착매립 간척공법(Research of Dry internal Project Site Digging Reclamation Method, DIPLDRM)은 새만금 내부개발용지확보 및 환경문제를 해결하기 위한 건식매립기법 중 새로운 공법이다. 이 공법을 사용함으로써 건식 공법 자체 호소 내의 매립토 활용으로 환경문제가 해결되고 생태계 파괴감소와 부대비용을 절감, 운반비용 절감이라는 장점이 있지만 고립된 호소가 오염된다는 단점이 있다. 이러한 단점을 극복하기 위해 IoT 기반 시스템을 도입하여 수질 오염을 최대한으로 줄일 필요성이 있다. 본 논문은 내부건식기법과 그 단점인 수질오염을 줄일 수질개선과 수질오염측정을 위한 IoT 기상 데이터분석 시스템을 구현하는데 목적이 있다.

  • PDF

Simulation of Mixing Transport on Inner Reservoir and Influence Impacts on Outer Region for the Saemankeum Effluents Caused by Gate Operation (새만금호 수문 개방에 따른 내측의 혼합수송 및 외해역의 방류영향모의)

  • Suh Seung-Won;Cho Wan-Hei;Yoo Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • Numerical model tests are done in order to evaluate impact zone of low salinity water on outer region of the developing Saemankeum reservoir. Also saline mixing processes are investigated f3r the inner reservoir with consideration of Mankyoung and Donjin riverine flood discharges when sea water is passing freely through gate. In these analyses 2-d ADCIRC, 3-d TIDED3D and CE-QUAL-ICM models are used. Through models tests, it is found that inner reservoir mixing process caused by inflow of outer sea water occurs gradually. It takes at least one month for complete mixing on Mankyoung part and 6 month on Dongjin part of the reservoir. When Sinsi or Garyeok gates are opened to control inner reservoir level, discharging velocities decrease exponentially from the gates, but show very strong currents of 0.5m/sec to the 10Km region apart. These results imply that hydrodynamic circulation and ecosystem of frontal region of the Saemankeum dike might be affected in amount by gate operations, since low saline inner waters are discharged periodically at ebb tide according to tidal level.

Simulation of Water Quality Changes in the Saemangeum Reservoir Induced by Dike Completion (방조제 완공에 따른 호내부 수질변화 모의)

  • Suh, Seung-Won;Lee, Hwa-Young;Yoo, Sang-Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.258-271
    • /
    • 2010
  • In order to figure out hydrodynamic and water quality changes after completion of dike construction of the Saemangeum, which behaves as a semi-enclosed estuarine lake, numerical simulations based on fine grid structure by using EFDC were intensively carried out. In this study some limitations of precedent study has been improved and gate operation were considered. Also 3 phases such as air-water-sediment interaction modeling was considered. It is clear that inner mixing of the Saemangeum is dominated by Mankyeong and Dongjin riverine discharges rather than the gate opening influence through the Lagrangian particle tracking simulations. Vertical DO structure after the dike completion shows steep gradient especially at Dongjin river estuary due to lessen of outer sea water exchange. Increasing SOD at stagnantly changed man-made reservoir might cause oxygen deficiency and accelerating degradation of water quality. According to TSI evaluation test representing eutrophication status, it shows high possibility of eutrophication along Mankyeong waterway in spite of dike completion, while the index is getting high after final closing along Dongjin waterway. Numerical tests with gate operations show significant differences in water quality. Thus it should be noted that proper gate operation plays a major role in preserving target water quality and management for inner development plan.

Consideration on Changes of Density Stratification in Saemangeum Reservoir (새만금호 내 밀도 성층 변화 고찰)

  • Oh, Chan-Sung;Choi, Jung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.81-93
    • /
    • 2015
  • The comprehensive master plan in November 2010 on Saemangeum internal development has been released, and there is a need for complementary measures related to in-situ monitoring methods in order to acquire water temperature (T) and salinity (S) data. Thus, these data are monitored and analyzed by Korea Rural Community Corporation continuously. The purposes of current study are to evaluate the distributions of seasonal T and S, sigma-t, and stratification parameter and to compare annual stratification system in 2011 and 2012. To achieve these objectives, monthly vertical changes of T, S, and sigma-t, which are reproduced by a kriging technique, have been analyzed. In summer, the temperature difference between surface and bottom layers varies from 2 to $3^{\circ}C$, and the stratification of T is considerably weak. The stratification of S occurs abruptly within depth of EL. (-)5 to EL. (-)10 m. Therefore, stratification is induced by sudden increasing of water inflow amount due to a localized downpour during the rainy season, and these stratification processes are strongly influenced by inflowing a fresh water from watersheds in estuary environment.

Simulation of Gate Operations on Samangeum Reservoir to Maintain Target Water Level (새만금호 관리수위 유지를 위한 수문 운영방안모의)

  • Suh, Seung-Won;Cho, Wan-Hei;Lee, Hwa-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.4
    • /
    • pp.133-144
    • /
    • 2006
  • It is investigated using ADCIRC model to find an optimal gate operation in order to maintain target water level of the inner Saemangeum Reservoir. Various developing procedures and river inflows conditions are considered in modeling. For the gate operations, consecutive openings to inflow and outflow, such as once a day, twice a day and once per two days are considered. However water level increases gradually due to river inflows regardless of gate operations. In order to maintain target level 0.0 m, it is recommended to shut down of gate in order to prevent inflows of outer sea water at least once per 6 days for normal riverine inflows and once per 3 days for flood inflows during consecutive operations. Then it is balanced within maximum of ${\pm}0.4m$ of deviations from target level of 0.0 meter.