• 제목/요약/키워드: 상황예측

검색결과 2,302건 처리시간 0.03초

돌발상황 처리시간 예측을 위한 영향요인 분석 및 SMOGN-DNN 모델 개발 (Analysis of Incident Impact Factors and Development of SMOGN-DNN Model for Prediction of Incident Clearance Time)

  • 윤규리;배상훈
    • 한국ITS학회 논문지
    • /
    • 제20권4호
    • /
    • pp.46-56
    • /
    • 2021
  • 돌발상황으로 인한 비반복정체로 발생하는 높은 교통비용과 혼잡을 효과적으로 해소하기 위해서 돌발상황 처리시간을 예측하는 것은 중요하다. 본 연구에서는 인공신경망을 활용한 예측모델 개발을 위해 국내 도로상황에 적합한 돌발상황 처리시간 영향요인을 분석하고, 이를 학습데이터로 생성하였다. 기존 연구에서 장시간 소요되는 돌발상황 처리시간에 대한 과소 예측 문제가 발생하여 이에 대한 해결방안으로 본 연구에서는 SMOGN기법을 적용한 오버샘플링 학습데이터를 생성하여 이를 모델에 적용하였다. 그 결과 SMOGN기법을 적용한 DNN모델이 MAE 18.3분으로 연구 과정에서 구축된 모델 중 가장 높은 정확도로 돌발상황 처리시간을 예측하여, 기존에 개발된 예측모델의 한계점을 보완할 수 있을 것으로 기대한다.

텍스트 마이닝을 이용한 상황 정보 분석 및 예측 프로세스에 관한 연구 (A novel on Context Information Analysis and Prediction Process using Text Mining)

  • 정세훈;강주희;김종찬;심춘보
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.1039-1040
    • /
    • 2015
  • 최근 IoT 및 인공지능 기술을 활용한 상황 정보 예측 서비스가 각광을 받고 있다. 본 논문에서는 특정 메타 데이터(Meta Data)로부터 입력되는 정보를 기반으로 상황 정보 분석 및 예측하는 프로세스를 제안한다. 주성분 분석 및 데이터의 집단화(Corpus), 문서 매트릭스(Document Matrix), 단어 빈도수(Frequency)에 따른 데이터 전처리 과정을 통해 상황정보 데이터를 확보한다. 또한 연관 규칙분석을 통해 분류된 데이터의 연관성을 분석하여 예측 데이터의 연관성을 확보한다. 제안하는 상황정보 분석 및 예측 모델은 R을 적용하여 설계한다.

  • PDF

자율운항선박의 비상상황인식을 위한 경로예측 기반의 충돌위험영역 식별 기술의 기초 연구

  • 최진우;박정홍;김혜진
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.133-134
    • /
    • 2022
  • 본 논문에서는 자율운항선박의 육상 관제 및 원격제어를 위해, 자율운항선박의 비상상황인식 기술 개발에 대한 기초연구를 수행한다. 자율운항선박 주변의 타선들의 이동 경로를 예측하고 이에 따라 자선의 이동경로와 비교하여, 충돌위험 영역을 식별함으로써 비상상황 인식이 가능하도록 한다. 먼저, 타선의 이동경로 예측을 위해서는 선박자동식별시스템 AIS 정보를 바탕으로, 해당 해역에서의 통항패턴을 분석하고 이를 기반으로 타선의 특정 시간 동안의 이동 경로를 예측한다. 예측된 타선의 이동경로와 함께 자선의 이동경로를 비교 분석함으로, 최근 접점 및 최근접점 거리 정보 기반의 충돌위험영역을 식별한다. 식별된 충돌위험영역의 위험도에 따라 육상 관제센터에서는 원격 제어를 통한 위험상황 회피가 가능하도록 활용할 수 있다. 제안된 방법은 AIS에서 얻어지는 실제 항적 데이터를 이용하여 초기 결과를 검증하였다.

  • PDF

교통 돌발 상황을 고려한 도로 속도 예측 기법 (Road Speed Prediction Scheme Considering Traffic Incidents)

  • 박송희;최도진;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제20권4호
    • /
    • pp.25-37
    • /
    • 2020
  • 교통 혼잡으로 인한 사회적 비용이 증가하면서 도로 속도를 예측하기 위한 다양한 연구들이 진행되고 있다. 도로 속도 예측의 정확도를 향상시키기 위해서는 교통 돌발 상황을 고려할 필요가 있다. 본 논문에서는 교통 돌발 상황을 고려한 도로 속도 예측 기법을 제안한다. 제안하는 기법은 연결된 도로들이 미치는 영향을 반영하기 위해서 예측 도로의 속도 데이터 뿐만 아니라 연결된 도로들의 속도 데이터도 이용한다. 또한, 돌발 상황으로 인한 혼잡을 예측하기 위해 속도의 변화량을 분석한다. 연결된 도로와 타겟 도로의 속도 데이터를 LSTM의 입력 데이터로 이용하여 1차적으로 도로 속도를 예측한다. 교통 돌발 상황으로 도로의 규칙적인 흐름이 깨지며 발생하는 예측 오차를 줄이기 위해 이벤트 가중치를 적용하여 최종적으로 도로 속도를 예측한다. 다양한 성능 평가를 통해 제안된 방법의 우수성을 입증한다.

고속도로 돌발상황 지속시간 예측모형 개발 (Development of Freeway Incident Duration Prediction Models)

  • 신치현;김정훈
    • 대한교통학회지
    • /
    • 제20권3호
    • /
    • pp.17-30
    • /
    • 2002
  • 반복정체와 함께 돌발상황은 고속도로 교통혼잡의 주요 원인이 되고 있다. 발생된 돌발상황에 대해 즉각 정보를 제공하고 신속히 교통류를 관리하는 정도는 그 교통류관리시스템의 수준을 의미하는 것으로, 돌발상황에 의해 차로가 차단될 시간을 속히 예측하는 것은 돌발상황관리에서 매우 기본적인 사항이라 하지 않을 수 없다. 돌발상황에 따라 교통류관리대책을 수립·실시하고 교통정보를 제공하자면 돌발상황으로 인한 교통영향(지체와 대기행렬 길이)을 먼저 산정해 보아야 하며 그러기 위해서는 지속시간의 예측이 반드시 필요하다. 통상 돌발 상황의 지속시간은 그 유형 및 심각도에 따라 다양해지며 교통, 도로, 환경 등과 같은 복합적인 조건에 영향을 받는다. 따라서 돌발상황 지속시간 예측모형에 사용되는 독립변수는 돌발상황 확인시점에서 수집 가능한 변수이어야 하며 모형의 현장적용을 위해서는 해당도로의 교통관제시스템의 수준과 함께 정보원(CCTV, 순찰반 등)의 특성을 고려하여야 한다. 본 연구는 고속도로 돌발상황 지속시간 예측모형 개발을 목표로 하며, 한국도로공사 수원지사의 교통사고발생 속보 21개월 분의 자료를 정리하여 본선에서 발생한 각종 돌발상황 168건을 사용자료로 추려냈다. 이를 DB화하여 통계분석을 수행하였으며 고속도로에서의 돌발상황 지속시간 예측을 위한 다중선형회귀모형을 구축하였다. 그리고 모델링에 사용되지 않은 자료를 이용해 개발모형의 정확성 평가를 수행하였다.

전자정보산업분야 멀티미디어서비스 시장분석에 관한 연구 (Research on market analysis of electronic information multimedia services)

  • 류귀열;최기철
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.71-74
    • /
    • 1997
  • 멀티미디어 서비스 시장 수요예측에 관한 연구는 매우 어려운 작업으로 세계 각국에서도 수행된 바가 매우 적다. 우리의 연구는 멀티미디어 서비스 시장에 대한 적절한 가정을 하고 예측을 하였다. 따라서 시장상황이 우리의 가정과 다를 경우 우리의 예측의 정확성은 떨어진다고 볼수 있다. 따라서 시장상황이 우리의 가정과 다를 경우 우리의 예측의 정확성은 떨어진다고 볼수 있다. 따라서 우리의 시장예측이 정확하게 맞출 것이라고 생각하지 않는다. 다만, 우리의 예측이 멀티미디어 서비스 시장의 잠재력을 이해하고 우리나라 기업들의 멀티미디어 서비스에 대한 효과적인 기술개발과 경쟁력을 높이는데 귀중한 자료로 활용할수 있을 것이라고 생각한다.

  • PDF

LSTM 및 CNN-LSTM 신경망을 활용한 도시부 간선도로 속도 예측 (Speed Prediction of Urban Freeway Using LSTM and CNN-LSTM Neural Network)

  • 박부기;배상훈;정보경
    • 한국ITS학회 논문지
    • /
    • 제20권1호
    • /
    • pp.86-99
    • /
    • 2021
  • 교통혼잡을 완화하기 위한 방안 중 하나로 도로 이용자에게 교통상황 예측정보를 제공함으로써 교통량을 분산 시켜 도로 이용 효율을 증대시키는 방법이 있다. 이를 위해서는 신뢰성이 보장되고 정량적인 실시간 교통 속도 예측이 필수적이다. 본 연구에서는 상황별 교통속도 분석을 기반으로 이력 속도 데이터와 이력 속도 외의 교통류에 상관관계가 있는 데이터를 LSTM 입력 데이터로 활용하였다. 정상 교통류 상황에 대응하여 속도를 예측하는 LSTM 모델과 유고상황에 대응하여 속도를 예측하는 CNN-LSTM 모델을 개발하여 유고발생 후 1시간까지 5분 단위로 교통속도 예측을 시도하였다. 모델의 검증은 테스트 데이터를 통하여 교통상황별 예측성능을 분석하였다. 그 결과 정상 교통류에서는 평균 7.43km/h, 유고상황에서는 7.66km/h의 오차율로 각각 예측되었다.

축산관측이란 무엇이며 어떻게 하고 있는가

  • 문기한
    • 월간양계
    • /
    • 제15권통권160호
    • /
    • pp.118-122
    • /
    • 1983
  • 미래의 불확실한 농업상황을 체계적으로 과학적으로 예측함으로써 개별농가가 영농계획 수립의 지침으로 삼는 것은 물론 정부의 농업정책수립에도 활용될 수 있도록 과거와 현재의 가능한 관련정보를 수집정리하고 이를 과학적으로 분석하여 미래상황을 예측하고 널리 홍보하는 과정이다.

  • PDF

동질적 특징추출을 이용한 상황예측 구조의 설계 (A Design of Context Prediction Structure using Homogeneous Feature Extraction)

  • 김형선;임경미;임재현
    • 인터넷정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.85-94
    • /
    • 2010
  • 본 논문은 사용자가 이동하려는 위치를 사전에 예측하고 예측된 정보를 이용하여 사용자 서비스를 미리 제공할 수 있도록 하는 위치예측 구조를 제안한다. 제안한 구조는 7개의 단계를 거쳐 사용자의 위치예측 및 지능화된 서비스를 제공하도록 한다. 물리적 센서와 히스토리 데이터베이스로부터 수집된 상황정보는 이질적인 데이터 형태를 갖기 때문에 이로 인한 데이터의 중요도 및 추상화 과정에 어려움이 있다. 이에 본 논문은 데이터의 유형을 동질적인 형태로 바꾸어 특징 추출을 하는 위치 예측구조를 제안한다. 추출된 값은 SOFM을 통해 군집화하고 ARIMA를 통해 미리 사용자의 위치 정보를 얻으며, 추론 엔진을 거쳐 최종 서비스를 실현한다. 제안된 위치예측 구조의 검증을 위해 테스트베드를 구축하고 시나리오에 따라 실험한다.