• 제목/요약/키워드: 상황기반 유사도

검색결과 368건 처리시간 0.032초

사례기반추론을 이용한 상황인식 서비스 적용방안에 관한 연구 (A study of the context-aware service using case-based reasoning)

  • 이길재;안태기;이우동;김문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.401-402
    • /
    • 2007
  • 유비쿼터스 환경에서의 상황인식 서비스는 의료, 쇼핑, 교육, 소방, 문화 등 우리 사회 전 분야에 걸쳐 응용되고 있으며, 각 분야에 영향을 미치고 있다. 상황인식 서비스는 사용자의 상황정보를 정확하게 파악하여 신속한 서비스를 제공하는데 목적이 있다. 따라서 본 논문에서는 사용자의 상황정보를 바탕으로 보다 효율적이고 정확한 서비스를 제공하고자 지능적인 추론방법인 사례기반추론방법을 제안한다. 사례기반추론은 과거의 경험이나 상황을 사례 데이터베이스로 구축하여 어떠한 상황이나 문제가 발생하면 기존의 사례 데이터베이스에서 가장 유사한 사례들과 비교 분석하여 현재에 처한 상황과 가장 유사한 상황을 검색하여 그에 따른 사용자가 원하는 정보를 제공한다. 즉 사용자의 상황정보를 바탕으로 검색된 유사한 사례들에 대한 유사도를 측정, 구함으로써 유사도가 높은 사례일수록 현재의 상황과 가장 유사한 상황으로 인식하여 그에 따른 해결책을 제시하여 사용자로 하여금 원하는 서비스를 제공받고자한다.

  • PDF

상황과 정보 집적도를 고려한 유사도 기반의 맞춤형 지식 생성프레임워크 (Customized Knowledge Creation Framework using Context- and intensity-based Similarity)

  • 손미애;이현정
    • 인터넷정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.113-125
    • /
    • 2011
  • 정보의 출처와 형식이 다양해지고 정보의 양 또한 많아짐에 따라 소셜 웹에서의 맞춤형 지식 생성은 더욱 어려워지고 있다. RSS(Really Simple Syndication)가 정보 수집 방법의 개선에 일조했으나, 웹에 산재된 정보를 찾아 필요한 정보들만으로 구성된 맞춤형 지식을 생성하는 것은 여전히 사용자들의 몫으로 남아 있다. 본 논문에서는 맞춤형 지식 생성의 용이성을 제고하기 위해 상황 기반 유사도를 이용한 맞춤형 지식생성 프레임워크를 제안하였다. 본 프레임워크는 기본적으로 사례 기반추론의 절차를 따르지만, 기존 사례 기반의 유사도 계산 방식이 문법적 추론에 기반했던 것과 달리, 온톨로지를 활용한 의미적 유사도를 이용한 사례 기반 추론을 활용한다. 또한 사용자 요구를 만족하는 유사사례의 보정을 위해 온톨로지를 활용한 정보 집적도 기반의 유사도 방법론을 제안하였다. 본 프레임워크에서는 첫째 비구조적인 웹 정보를 사례 형태의 구조적 정보로 변환하고, 둘째 사용자의 요구에 적합한 의미론적 유사사례를 찾은 후 셋째, 선택된 유사사례의 정보 집적도를 고려한 보정을 통해 맞춤형 지식을 생성하는 과정을 거친다. 본 논문에서는 유사도 계산에 일반적으로 활용되는 여러 방법론들과 비교를 통하여 제안한 온톨로지 기반 의미적 유사도 계산 방법론의 타당성을 입증하였다.

선박에서 퍼지 데이터베이스를 이용한 지능형 화재진압통제시스템의 성능 개선 (Performance Improvement of Intelligent Firefignting Control System for a Ship using Fuzzy Database)

  • 현우석;김용기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.340-343
    • /
    • 2000
  • 본 논문에서는 선박에서 퍼지 데이터베이스를 이용하여 지능형 화재진압통제시스템의 성능을 개선시키는 방법에 대하여 논의하였다. 규칙과 사례가 통합된 화재진압통제 전문가시스템(C-FFES)에서는 사례기반 추론을 하기 위한 사례베이스가 일반적인 데이터베이스로 구성되어 있어서, 이전에 화재가 발생했던 사례와 현재의 사례가 유사한지를 구별하기가 쉽지 않은 문제점을 지니고 있다. 제안하는 시스템에서는 예외적인 상황에서 화재가 발생하는 사례를 퍼지데이터베이스로 구성하고, 현 상황과 예외적인 상황에서 화재가 발생하는 사례를 조회하기 위하여 퍼지 유사도 개념을 적용하여 현재 입력된 사례와 가장 유사한 사례가 조회될 수 있도록 하였다. 또한 기존의 규칙 기반 FFES(Fire Fighting Expert System), 사례기반 추론에 의해 확장된 C-FFES(Combined-Fire Fighting Expert System) 그리고 제안하는 A-FFES(Advanced Fire fighting Expert System)를 비교를 통해, 제안하는 A-FFES가 화재탐지율을 향상시킴을 보였다.

  • PDF

논문 데이터베이스를 위한 텍스트 기반 유사도 계산 방안 (A Text-based Similarity Measure for Scientific Literature)

  • 윤석호;김상욱
    • 정보처리학회논문지D
    • /
    • 제18D권5호
    • /
    • pp.317-322
    • /
    • 2011
  • 본 논문에서는 기존 텍스트 기반 유사도 계산 방안을 이용해서 논문들 간의 유사도를 계산하는 방안에 대해서 논의한다. 먼저, 실험을 통해서 논문의 제목, 요약, 그리고 본문 중에서 어떤 부분이 유사도를 계산하는데 더 유용한지 확인하고 적절한 가중치를 부여한다. 두 번째로 논문의 텍스트 정보가 불완전한 상황에서 논문들 간의 유사도를 보다 정확하게 계산할 수 있는 키워드 확장 방안을 제안한다. 실제 논문 데이터베이스를 이용해서 제안하는 방안의 우수성을 검증한다.

상황 인식을 이용한 사례기반 음악추천시스템 (A Case Based Music Recommendation System using Context-Awareness)

  • 이재식;이진천
    • 지능정보연구
    • /
    • 제12권3호
    • /
    • pp.111-126
    • /
    • 2006
  • 상황 인식은 유비쿼터스 컴퓨팅 환경에서 중요한 핵심 기술 중 하나이다. 본 연구에서는 상황 인식 기술을 사례기반 음악추천시스템에 접목시켰다. 본 연구에서 제안하는 시스템은 음악청취의향 인식모듈과 음악추천 모듈로 구성된다. 음악청취의향 인식모듈은 사용자가 음악을 듣고 싶어 하는지 아닌지를 외부상황정보를 이용하여 추론한다. 사용자가 음악을 청취할 의향이 있다고 판단되면, 음악추천 모듈은 사용자와 유사한 성향을 보이는 다른 사용자들이 유사한 상황에서 주로 들었던 노래들을 사용자에게 추천한다. 제안 시스템과 전통적인 방식의 사례기반 음악추천시스템의 성능을 비교한 결과, 제안 시스템이 추천의 정확도에서 약 9% 포인트 높게 나타났다.

  • PDF

목표 시나리오를 이용한 비즈니스 프로세스 외부상황 평가 모델 (Evaluation Model of Business process Contextual Situations using goal-scenario)

  • 백수진;고종원;송영재
    • 한국콘텐츠학회논문지
    • /
    • 제11권8호
    • /
    • pp.43-50
    • /
    • 2011
  • 초기에 예측하지 못한 환경에 대응하기 위한 핵심 요소로 비즈니스 활동 모니터링이 주목받고 있다. 그러나 기존의 이벤트 처리 기반 모니터링 시스템과 실시간 조기 경보 비즈니스 활동 모니터링은 고정된 환경을 가정하여 설계 시 룰 기반으로 표현하여 경보 여부를 결정하거나, 이벤트 속성값이 입력되는 매시점마다 측정하여 경보를 내리게 된다. 따라서, 복잡한 환경에서의 새로운 외부 상황 문제에 대한 발생 범위와 심각한 정도 등을 판별하는데 한계가 있으며, 추상화하지 못한다. 본 논문에서는 외부에서 발생하는 새로운 시나리오의 서비스 요구를 기존의 실행중인 모니터링을 통해 지속적인 서비스 제공을 보장하도록 목표 시나리오를 이용한 비즈니스 프로세스 외부상황 평가 모델을 제안하였다. 외부 상황에 따른 새로운 요구사항을 목표 시나리오 기반으로 분석을 하고, 유사 프로세스 모델을 찾아 유사도와 연관도를 합하여 파악한 뒤 프로세스를 사전에 중단 시키거나 원하는 방향으로 변경하도록 한다.

사례 기반 추론을 이용한 선박 USN 위험 상황 인식 시스템 구현 및 설계 (A Design and Implement Vessel USN Risk Context Aware System using Case Based Reasoning)

  • 송병호;이성로
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.42-50
    • /
    • 2010
  • 기존의 선박 USN 관련 시스템은 선박 USN에서 획득한 데이터를 단순히 모니터링 하는 데 그치고 있으므로 해양의 특성을 고려한 지능적인 의사 결정 알고리즘을 갖는 시스템 구현이 필요하다. 본 논문에서는 사례 기반 추론 기법을 이용하여 디지털 선박의 화재, 파손에 관한 사례를 지식 베이스로 구축하고 추론하는 시스템을 설계하였다. 가장 유사한 사례 추천을 위해 KNN 알고리즘을 이용하였고 화재 상황과 파손 상황 사례 베이스를 구축하기 위하여 각 상황별로 3,000 건의 데이터를 입력받아 실험하였다. 실험 결과 화재 사례와 파손 사례에 대한 평균 정확도는 약 82.5%, 80.1%를 나타냈고 유사도 분류 k 개수가 7인 경우에 최적의 수행 결과를 나타냈다. 또한, 추론된 결과를 이용하여 선박 모니터링 시스템을 구현하였다.

Normalized Cuts을 이용한 그래프 기반의 모션 분할 (Graph-based Motion Segmentation using Normalized Cuts)

  • 윤성주;박안진;정기철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.522-526
    • /
    • 2008
  • 모션 캡쳐 장비는 사람의 자연스러운 행동이나 동작 정보를 정밀하게 얻기 위해 널리 사용되며, 영화나 게임과 같은 콘텐츠에서 자주 활용되고 있다. 하지만 모션 캡쳐 장비가 고가이기 때문에 한번 입력받은 데이터를 모션별로 분할하고 상황에 맞게 재결합하여 사용할 필요가 있으며, 입력 데이터를 모션별로 분할하는 것은 대부분 수동으로 이루어진다. 이 때문에 캡쳐된 데이터를 자동으로 분할하기 위한 연구들이 다양하게 시도되고 있다. 기존의 연구들은 크게 전역적 특성에 대한 고려없이 이웃하는 프레임만을 고려하는 온라인 방식과 데이터를 전역적으로 고려하나 이웃하는 프레임 사이의 관계를 고려하지 않는 오프라인 방식으로 나누어진다. 본 논문에서는 온라인과 오프라인 방식을 병합한 그래프 기반의 모션 분할 방법을 제안한다. 분할을 위해 먼저 모션데이터를 기반으로 그래프를 생성하며, 그래프는 이웃하는 각 프레임사이의 유사도뿐만 아니라 시간축을 기반으로 일정시간내의 프레임들의 유사도를 모두 고려하였다. 이렇게 생성된 그래프를 분할하기 위해 분할된 모션내의 유사도 합을 최소화하고 각 모션간의 유사도는 최대화할 수 있는 normalized cuts을 이용하였다. 실험에서 제안된 방법은 기존의 오프라인 방식 중 하나인 GMM과 온라인 방식 중 하나인 국부최소값 분할 방법보다 좋은 결과를 보였으며, 이는 각 프레임 사이의 유사도뿐만 아니라 일정시간내의 유사도를 전역적으로 고려하기 때문이다.

  • PDF

완전한 콜드 스타트 문제에서 교차 도메인 추천 시스템 (Cross-Domain Recommendation System in Complete Cold Start Problem)

  • 남규현;유재성;채경수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.514-518
    • /
    • 2019
  • 기존의 교차 도메인 추천은 일반적으로 서로 다른 도메인 데이터의 지식 결합이나 지식 공유를 바탕으로 진행된다. 이러한 방식들은 최소 한 개 이상의 도메인 데이터가 필요해서 모든 도메인의 피드백 데이터가 없는 실제 서비스 초기 상황에는 적합하지 않을 수 있다. 따라서 본 논문에서는 서비스 초반 모든 도메인의 피드백 데이터가 없고 콘텐츠 데이터만 존재하는 상황에서 교차 도메인 추천 시스템을 효과적으로 시작하기 위해 텍스트 임베딩, 클러스터링, 프로파일링 및 콘텐츠 기반 필터링을 활용한 추천 시스템 구성을 제안하고자 한다. 평가를 위해 여행지, 지역 축제, 공연을 포함하는 문화 관광 데이터와, 이에 대한 사용자 프로파일링 결과를 바탕으로 추천을 진행하였다. 그 결과, 콘텐츠 임베딩에 대한 유사도를 시각화하여 교차 도메인 아이템 간 유사성을 확인할 수 있었고, 사용자별 추천 결과를 통해 제안한 교차 도메인 추천 시스템이 유의미하게 동작함을 보였다.

  • PDF

Bag of Words 기반 음향 상황 인지를 위한 주파수-캡스트럴 특징 (Frequency-Cepstral Features for Bag of Words Based Acoustic Context Awareness)

  • 박상욱;최우현;고한석
    • 한국음향학회지
    • /
    • 제33권4호
    • /
    • pp.248-254
    • /
    • 2014
  • 음향 상황 인지(acoustic context awareness)는 다양하게 발생되는 음원들로부터 어떠한 장소인지 또는 어떠한 사건이 발생하는지를 판단하는 기술로 음향 이벤트 검출 또는 인식 보다 한 단계 더 복잡한 문제이다. 기존의 상황인지 기술은 음향 이벤트 검출 또는 인식 기술에 기반하여 현재 상황을 인지하는 방법을 사용하고 있다. 하지만 이와 같은 접근 방법은 여러 음원이 동시에 발생하거나 유사한 음원이 발생하는 실제 환경에서 정확한 상황 판단이 어렵다. 특히 버스와 지하철은 승객들에 의한 잡음으로 상황을 인지하기 힘들다. 이러한 문제를 극복하기 위해 본 논문에서는 유사한 음향 이벤트가 발생하는 버스와 지하철 상황을 인식할 수 있는 Bag of Words 기반의 상황 인지 알고리즘을 연구하고 코드북 생성을 위한 특징벡터를 제안한다. 제안하는 특징벡터의 효용성은 Support Vector Machine을 이용한 실험을 통해 검증했다.