본 논문에서는 실내외 환경에서 상호 정보를 바탕으로 대상의 위치를 추적할 수 있는 영역축소 기법을 이용한 협력 위치추정 알고리즘을 제안하였다. 제안한 알고리즘은 고정노드의 수가 제한된 환경에서 미지의 노드 위치 정보를 활용한 상호 협력적인 위치추정 방식으로 본 연구에서는 3단계에 걸쳐 노드의 위치를 추정하였다. 실험 결과 동일한 개수의 RN일 때 BN의 수가 증가할수록 본 논문에서 제안한 영역축소 방법을 이용한 협력위치추정의 정밀도가 향상됨을 확인하였다.
최근 단백질 및 도메인과 관련된 방대한 양의 데이타들이 인터넷상에 공표되고 축적됨에 따라, 단백질간의 상호작용에 대한 예측 시스템의 필요성이 제기되고 있다. 본 논문에서는 이러한 데이타를 이용하여 계산적으로 도메인 조합 쌍에 기반하여 단백질의 상호작용 확률을 예측하는 새로운 단백질 상호작용 예측 시스템을 제안한다. 제안된 예측 시스템에서는 기존의 도메인 쌍(domain pair)의 제약성을 극복하기 위하여 도메인 조합(domain combination)과 도메인 조합 쌍(domain combination pair)의 개념이 새롭게 도입하였다. 그리고 도메인 조합 쌍(domain combination pair 또는 dc-pair)을 단백질 상호작용의 기본 단위로 간주하고 예측을 시도한다. 예측 시스템은 크게 예측 준비 과정과 서비스 과정으로 구성되어 있다. 예측 준비 과정에서는 상호작용이 있는 것으로 알려진 단백질 쌍 집합과 상호작용이 없는 것으로 추정되는 단백질 도메인 쌍 집합으로부터 각각 도메인 조합 정보와 그 출현 빈도를 추출한다. 추출된 정보들은 출현 확률 배열(Appearance Probability Matrix 또는 AP matrix)로 불리는 배열 구조에 저장된다. 논문에서는 출현 확률 배열에 기반을 두어, 단백질-단백질 상호작용을 예측하는 확률식 PIP(Primary Interaction Probability)를 고안하고, 고안된 확률식을 이용하여, 상호작용이 있는 것으로 알려진 단백질 쌍 집합과 상호작용이 없는 것으로 추정되는 단백질 도메인 쌍 집합의 확률 값 분포를 생성시킨다. 예측서비스 과정에서는 예측 준비 과정에서 얻어진 분포와 확률식을 이용하여 임의의 단백질 쌍의 상호작용 확률을 계산한다. 예측 모델의 유효성은 효모(yeast)에서 상호작용이 있는 것으로 보고된 단백질 쌍 집합과 상호작용이 없는 것으로 추정되는 단백질 쌍 집합을 이용하여 검증하였다. DIP(Database of Inter-acting Proteins)의 상호작용이 있는 것으로 알려진 효모 단백질 쌍 집합의 80%를 학습 집단으로 사용했을 때, 86%의 sensitivity와 56%의 specificity를 나타내어, 도메인을 기반으로 한 기존의 예측 시스템에 비해서 우월한 예측 정확도를 보여주었다. 이와 같은 예측 정확도의 개선은 본 예측 시스템이 상호작용의 기본 단위로 dc-pair를 채택한 점과 분류를 위하여 새롭게 고안하여 사용한 PIP식이 유효했던 것으로 판단된다.
다중프로세서 시스템의 상호연결 네트워크는 주로 다중버스 구조, 십자막대 스위치 구조 또는 다중포트 접속 기억구조로 연결되고 있는데, 본 연구에서는 다중포트 접속 기억구조를 하는 다중프로세서 시스템 상에서 정상적으로 전체 시스템과 다중처리 시스템이 작동할 확률인 시스템 신뢰도와 다중처리 시스템 신뢰도를 추정하는 방법으로서, 미리 알려진 사전정보를 이용하여 좀더 정확하고 유효성이 뛰어난 신뢰도 추정량을 구하는 베이지안 방법을 제안한다.
서로 떨어져 설치된 두 개의 음향 센서에 도달하는 신호의 상호 지연 시간을 추정하는 것은 실내 음향과 소나 등에서 목표물 위치 추정 문제나 추적 및 동기화에 이르기까지 다방면에서 쓰이고 있다. 시간 지연을 구하는 방법에서는 두 수신 신호 사이의 상호 상관을 이용한 방법이 대표적이다. 그러나 이 방법은 수신 음향 센서에 잡음이 부과 되는 것에 충분한 고려가 없었다. 본 논문은 수신 음향 센서에 모두 잡음이 부과된 경우를 고려한 새로운 시간 지연 추정 방법을 제안한다. 기존의 일반 상호 상관법과 적응 고유치 분석법과 비교를 통해서 새로 제안한 알고리즘이 유색 신호에 부가된 가우시안 잡음환경에서 우수성이 있음을 확인한다.
본 논문에서는 다중 모달리티 영상으로부터 의미 있는 정보를 제공하기 위하여 상호정보 최적화를 통한 영상정합 방법을 제안한다. 본 방법은 두 영상이 기하학적으로 정합되면 상호정보가 최대화된다는 가정 하에 두 영상에서 대응되는 위치의 명암도간 통계적 의존관계나 정보중복성을 계산하는 상호정보를 통하여 영상간 변형관계를 추정함으로써 영상을 정합한다. 실험결과로는 뇌 컴퓨터단층촬영영상의 상호정보를 최적화한 정합결과와 가우시안형 잡음 첨가에 따른 정합 비교 결과를 제시한다. 본 방법은 기존 정합방법에서 사용하는 영상분할이나 특징점 추출에 의한 정합이 아닌 영상 자체 정보를 사용함으로써 사용자와의 상호작용이 불필요하며 정합의 정확도를 향상시킬 수 있고 잡음에도 견고하다.
본 논문은 실내 공간에서 상호작용 로봇이 사용자의 시선이 응시하는 목표지점의 위치정보를 추정하는 방법을 제안한다. 저가의 웹캠으로부터 RGB 영상을 추출하고, 얼굴검출(Openface)모듈로부터 사용자의 헤드포즈 정보를 획득한 후 기하학적 연산을 적용하여 3차원 공간 내 사용자의 응시방향을 추정하게 된다. 추정된 응시방향과 테이블 상의 평면과의 상관관계를 통하여 최종적으로 사용자가 응시하는 목표 지점의 좌표를 추정하게 된다.
기업의 부실화과정에서 경영자는 그 누구보다도 먼저 부실화의 재무적 징후를 포착할 수 있을 것이며, 부정적인 정보가 외부에 누출되는 경우 발생할 수 있는 은행의 대출중단 등의 치명적 비용을 피하기 위하여 긍정적인 정보를 조작 유포시킬 강한 유인이 존재한다. 이러한 인식에 근거하여 경영자의 이익조절 가능성이 높아지는 기업부실화의 일정시점에서 기업부실예측의 현실적인 모형을 추정하는 데 본 연구의 목적이 있다. 본 연구에서는 부실기업에서 재무정보의 이익조절행위 가능성을 검증하기 위하여 1995년에서 1998년까지 부실화된 115개 상장기업들의 부실전 재무정보를 분석하였고, 총 20개의 재무변수와 그 변화율을 고려하여 부실예측모형을 추정하였다. 이러한 본 연구의 결과는 다음과 같이 요약할 수 있다. 첫째, 부실표본기업의 경우에 재무정보 상호간의 논리성이 와해되거나 크게 약화되어 경영자의 심각한 이익조절행위가 있는 것으로 추정되며, 수익성 정보에 집중되어 부실 2년전부터 심해지고 있는 것으로 나타났다. 둘째, 경영자의 이익조절행위로 인해 논리적 상관관계가 와해되지 않은 재무정보들은 부실예측에 대한 설명력을 갖고 있으며, 본 연구에서 9개의 재무변수로 추정한 부실예측모형은 부실 1년전 80%의 우수한 예측력을 보여주고 있다.
방사선 치료계획이나 사전수술계획 등에 컴퓨터 사용이 늘어남에 따라 의료영상별 특성에 따른 복합적 처리를 필요로 한다. 본 논문에서는 다중 모달리티 영상으로부터 의미 있는 정보를 제공하기 위하여 상호정보 최적화를 통한 영상정합 방법을 제안한다. 본 방법은 두 영상에서 대응되는 위치의 명암도간 통계적 의존관계와 정보중복성을 계산하는 상호정보(mutual information)를 통해 영상간 변형관계를 추정함으로써 영상을 정합한다. 실험결과로는 뇌 자기공명영상(MRI)과 컴퓨터단층촬영영상(CT)의 상호정보를 최적화하여 정합 결과를 제시한다. 본 방법은 기존 정합방법에서 사용하는 영상분할이나 특징점 추출 등의 전처리 과정 없이 영상 자체 정보를 기반으로 계산함으로써 정합의 정확도를 높일 수 있다.
서로 떨어져 설치된 두 개의 음향 수신기에 도달하는 신호의 상호 지연 시간을 추정하는 것은 실내 음향과 소나 등에서 목표물 위치 추정 문제나 추적 등 여러 방면에서 쓰이고 있다. 시간 지연을 구하는 방법에서는 두 수신 신호 사이의 상호 상관을 이용한 방법으로 대표되는 비 파라메트릭 방법과 시스템 인식을 기반으로 하는 파라메트릭 방법이 있다. 본 논문에서는 파라메트릭 방법에 기반을 둔 시간 지연 추정 방법을 제안한다. 특히 음향 수신기에 잡음이 부과되는 것을 고려한 방법을 제안한다. 그리고 백색 잡음 및 잔향 환경에서 기존의 일반 상호 상관법과 적응 고유치 분석법과 비교를 통해서 새로 제안한 알고리즘이 더 우수함을 확인한다.
수신신호의 도래방향 추정기술 중 MUSIC과 ESPRIT와 같은 방법들은 수신신호 벡터로부터 얻어진 상관행렬의 고유치 분해를 통하여 도래방향을 정도 높게 추정할 수 있는 초고분해 알고리즘들로 잘 이용되어 왔다. 그러나 이러한 방법들이 대규모 2차원 어레이 안테나를 구성하는 경우 과다한 연산량으로 인하여 실시간 처리에 장애가 되고 있으며, 어레이 안테나의 물리적인 결함이 있는 경우 보정을 요구한다. 이러한 문제를 해결하기 위하여 신경망 모델을 이용한 도래망향 추정 방법들이 연구되어 왔으나, 복수의 신호가 존재할 경우 신경망 모델에 대한 대규모 학습량을 요구한다는 문제점이 있다. 본 연구에서는 상호결합형 신경망 모델을 이용하여 도래방향을 추정하기 위한 방법을 제안하고, 컴퓨터 시뮬레이션을 통하여 실시간 처리가능성을 논한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.