As smartphone usage increases, the number of consumers who refer to review data of e-commercial products using web sites and SNS is also explosively multiplying. However, reading review data using traditional websites and SNS is time consuming. Also, it is impossible for consumers to read all the reviews. Therefore, a system that collects review data of products and conducts sentiment word analysis of the review is required to provide useful information. The majority of systems that provide such information inadequately reflect the properties of the product. In this study, we described a system that provides analysis and evaluation of e-commerce products through review sentiment words as reflected properties of the product. Furthermore, the system enables consumers to access processed information about reviews quickly and in visual format.
Proceedings of the Korean Information Science Society Conference
/
2002.10e
/
pp.244-246
/
2002
m-commerce의 관점에서 기존의 e-commerce상의 상품정보를 이용하는 것이 매우 중요하지만, m-commerce와 e-commerce를 지원하는 장치 디바이스간의 차이는 많은 제약이 되고있다. 특히, 모바일 디바이스의 화면은 데스크탑 PC 화면 보다 작은 디스플레이 크기를 제공하기 때문에 기존 데스크탑상에서 표현되던 상품정보 페이지를 모바일 디바이스에서 그대로 표현하기에는 어려움이 있다. 본 논문에서는 e-commerce상의 상품정보가 웹상의 새로운 문서기술 언어인 XML로 표현되어 있다고 가정하고, 이러한 XML 상품정보를 무선 인터넷 단말기인 PDA에서 효과적으로 디스플레이 할 수 있는 시스템을 개발한다. 시스템은Java 환경에서 J2ME에 기반하여 구현한다. 구현된 시스템에 Web상의 다양한 XML 상품정보를 적용한다.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.387-390
/
2009
인터넷의 생활화를 통해 우리 생활 패턴이 크게 변화하였다. 특히 상품 구매의 경우 온라인 시장의 성장과 상품 정보의 범람으로 소비자들의 구매 의사결정은 더욱 어려워졌다. 따라서 효율적인 상품 구매 의사결정을 위해서는 소셜 네트워크 분석(Social Network Analysis)을 기반으로 한 더 가치있는 정보를 선별하여 제공해 줄 수 있는 서비스가 필요하다. 따라서 본 논문에서는 온라인 소셜 네트워크 요소 분석을 통해 상품 후기에 대한 개인화된 가치 측정값 정보를 제공함으로써 소비자의 보다 효율적인 상품 구매가 가능하도록 도와주는 '가치 측정 알고리즘'을 제안한다.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.53-58
/
2013
온라인 소비자들은 amazon.com과 같은 온라인 상점 플랫폼에 상품 평가(리뷰: review) 글을 남김으로써 대상 상품에 대한 의견을 표현한다. 이러한 상품 리뷰는 다른 소비자들의 구매 결정에도 큰 영향을 끼친다는 관점에서 볼 때, 매우 중요한 정보원이라고 할 수 있다. 사람들이 남긴 의견 정보(opinion)를 자동으로 추출하거나 분석하고자 하는 연구인 감성 분석(sentiment analysis)분야에서 과거에 진행된 대다수의 연구들은 크게는 문서 단위에서 작게는 상품의 요소(aspect) 단위로 사용자들이 남긴 의견이 긍정적 혹은 부정적 감정을 포함하고 있는지 분석하고자 하였다. 이렇게 소비자들이 남긴 의견이 대상 상품 혹은 상품의 요소를 긍정적 혹은 부정적으로 판단했는지 여부를 판단하는 것이 유용한 경우도 있겠으나, 본 연구에서는 소비자들이 '어떤 관점'에서 대상 상품 혹은 상품의 요소를 평가했는지를 자동으로 추출하는 방법에 초점을 두었다. 본 연구에서는 형용사의 대표적인 성질 중 하나가 자신이 수식하는 명사의 속성에 값을 부여하는 것임에 주목하여, 수식된 명사의 속성을 추출하고자 하였고 이를 위해 WordNet을 사용하였다. 제안하는 방법의 효과를 검증하기 위해 3명의 평가자를 활용하여 실험을 하였으며 그 결과는 본 연구 방향이 감성분석에 있어 새로운 가능성을 열기에 충분하다는 것을 보여주었다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.79-80
/
2021
인터넷은 우리 경제를 디지털 경제로 변화시키며 전자상거래도 증가하고 있다. 따라서 구매자가 전자상거래에서 남기는 긍정적인, 부정적인 상품평은 상품기획의 주요 정보가 될 수 있다. 본 논문에서는 버티컬 무소음 마우스 10,000개에 대한 정형화된 데이터셋을 Word2Vec을 이용하여 유사도 분석, 온라인 상품평 빈도분석 상위 50개 단어를 제시하여 실제 상품을 사용한 후 설문조사 시행을 하였다. 온라인 상품평 유사도 분석결과 클릭 키워드에 대한 장점으로 통증(.986), 디자인(.982)가 분석되었으며 단점은 적응(.866), 불편(.854)이었다. 오프라인 상품평에서는 장점으로 디자인(17명), 단점으로 불편(11명)이었다. 또한 온라인과 오프라인의 상품평을 비교함으로써 구매자의 긍정, 부정의 의미를 교차 확인하여 유의미한 정보를 제시 하였다고 볼수 있다. 따라서 본 연구에서 제시하는 상품기획 프로세스를 신상품 개발 및 기존 상품의 개선 전략으로 적용할 수 있겠다.
As online shopping malls continue to grow in popularity, various chances of consumption are provided to customers. Customers decide the purchase by exploiting information provided by shopping malls such as the reviews of actual purchasing users, the detailed information of items, and so on. It is required to provide objective and reliable information because customers have to decide on their own whether the massive information is credible. In this paper, we propose a personalized recommendation method considering an item confidence to recommend reliable items. The proposed method determines user preferences based on various behaviors for personalized recommendation. We also propose an user preference measurement that considers time weights to apply the latest propensity to consume. Finally, we predict the preference score of items that have not been used or purchased before, and we recommend items that have highest scores in terms of both the predicted preference score and the item confidence score.
In this research, we are suggesting intelligent information system fur traveling which is focusing on product bundling and integration of information from various resources on ubiquitous computing environment. It is necessary for products structure to easily integrate according to customers' requirements because traveling product is integrated by various traveling resources like airline, hotel reservation, and so on. To guarantee of traveler's mobility in ubiquitous computing environment, we need product bundling and modification process to configure products and semantic web service which supports ontology based traveling information system to support immediate integrating of traveling information from various resources. In this research, we offer a product bundling and integration of information. It is based on the semantic web service, with several components (single products) to reconfigure a bundle of traveling products.
본 논문은 동영상의 프레임 정보와 고객의 프로파일을 이용하여 선호상품을 추천하는 시스템의 설계이다. 특정한 목적을 위해 제작된 동영상의 프레임에 재생되는 영상의 상품을 추출하고 선택된 프레임에 등록되어있는 상품목록과 고객의 이전구매정보 및 유사고객그룹의 선호도를 계산하여 고객에게 상품을 추천하여 주는 시스템으로 기존의 전자상거래와 IPTV의 발달로 인하여 동영상을 보면서 구매하고자 하는 상품이나 유사정보가 있을 때 원클릭으로 제품정보를 추출하여 검색하고 상품의 구매까지 일괄적으로 처리할 수 있는 시스템의 설계와 구현 실험 하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.562-564
/
2005
무선 통신 기술의 발전에 따라, 오늘날은 무선 단말기 상에서 전자상거래가 이루어지는 모바일 커머스 시대이다. 웹상에는 수많은 인터넷 쇼핑몰들이 제공하는 유용한 대량의 상품정보가 존재하나, 이러한 상품 정보가 모바일 단말기의 특성 및 성능 제약으로 인해 모바일 커머스의 컨텐츠로 사용되기에는 적합하지 않다. 웹의 정보를 무선 단말기상에서 이용하기 위한 여러 연구가 진행되고 있으나, 모바일 커머스를 위한 웹 상품 정보 이용에 관한 연구는 아직 미흡하다. 본 논문에서는 인터넷 쇼핑몰의 임의의 HTML 문서에 대해서 상품 항목들을 추출하여 미리 정의된 상품구조의 XML 문서로 포장하여 모바일 폰의 클라이언트에 전달할 수 있는 시스템을 설계하고 구현하며, 이 시스템을 모바일 커머스에 적용한다. 또한, 구현된 시스템에 대한 실행 예를 보인다.
Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is the most successful recommendation technology. Web usage mining and clustering analysis are widely used in the recommendation field. In this paper, we propose several hybrid collaborative filtering-based recommender procedures to address the effect of web usage mining and cluster analysis. Through the experiment with real e-commerce data, it is found that collaborative filtering using web log data can perform recommendation tasks effectively, but using cluster analysis can perform efficiently.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.