• Title/Summary/Keyword: 상태관측기

Search Result 226, Processing Time 0.018 seconds

Observer-based Intelligent Control of Nonlinear Networked Control Systems with Packet Loss for Wireless Sensor Network (무선 센서 네트워크를 위한 패킷 손실을 포함한 비선형 네트워크 제어 시스템의 관측기 기반 지능 제어기 설계)

  • Ra, In-Ho;Kim, Se-Jin;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2009
  • In this paper, an observer-based intelligent controller for the nonlinear networked control systems with packet loss is proposed for wireless sensor network. For the intelligent control of the nonlinear system, it uses the fuzzy system with Takagi-Sugeno (T-S) fuzzy model. The observer is designed for the fuzzy networked control system, and the output feedback controller is proposed for the stability of estimates and errors. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Robust Trajectory Tracking Control of a Mobile Robot Based on Weighted Integral PDC and T-S Fuzzy Disturbance Observer (하중 적분 PDC와 T-S 퍼지 외란 관측기를 이용한 이동 로봇의 강인 궤도 추적 제어)

  • Baek, Du-san;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • In this paper, a robust and more accurate trajectory tracking control method for a mobile robot is proposed using WIPDC(Weighted Integral Parallel Distributed Compensation) and T-S Fuzzy disturbance observer. WIPDC reduces the steady state error by adding weighted integral term to PDC. And, T-S Fuzzy disturbance observer makes it possible to estimate and cancel disturbances for a T-S fuzzy model system. As a result, the trajectory tracking controller based on T-S Fuzzy disturbance observer shows robust tracking performance. When the initial postures of a mobile robot and the reference trajectory are different, the initial control inputs to the mobile robot become too large to apply them practically. In this study, also, the problem is solved by designing an initial approach path using a path planning method which employs $B\acute{e}zier$ curve with acceleration limits. Performances of the proposed method are proved from the simulation results.

The Haar Function Approach for the Unknown Input Observer Design (미지입력 관측기 설계를 위한 하알함수 접근법)

  • 김진태;이한석;임윤식;김종부;이명규
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.117-126
    • /
    • 2003
  • This paper proposes a real-time application of Walsh functions which is based on the on-line Walsh transformation and on-line Walsh function's differential operation. In the existing method of orthogonal functions, a major disadvantage is that process signals need to be recorded prior to obtaining their expansions. This paper proposes a novel method of Walsh transformation to overcome this shortcoming. And the proposed method apply to the unknown inputs observer(UIO) design for linear time-invariant dynamical systems

The Position and Speed Control of the BLDC Motor Using the Disturbance Observer (외란 관측기를 이용한 BLDCM의 위치 및 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.899-906
    • /
    • 2020
  • Motor control requires robust and precise control performance even in the presence of errors in the mathematical model of the motor and disturbances acting on the motor. For robust and precise control, a disturbance observer was designed to estimate the load fluctuation and applied to a back-stepping controller designed as a nominal system. The control performance of the designed system was verified by applying it to the 120 [W] Brushless Direct Current Motor. As a result of the position control and speed control, the disturbance is overcome from the steady state error converges to zero, and asymptotically stable results can be confirmed.

Tracking Control of BLDC Motor Based on Disturbance Observer (외란 관측기 기반의 BLDC 전동기 추종제어)

  • Jeon, Yong-Ho;Lee, Shin-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.907-912
    • /
    • 2020
  • When designing a controller, a motor can have robust and precise control performance only by considering the error of the motor's mathematical model and the disturbance acting on it. For robust and precise control, the mechanical and electrical disturbance observers were designed to estimate the disturbance, and applied to the speed controller and current controller designed as a nominal system. To confirm the control performance of the designed system, it is applied to a 120 [W] class BLDC motor, and the result of the speed tracking control overcomes disturbances, the steady state error converges to zero, and the asymptotically stable result can be confirmed.

Improvement of Control Performance of PMSM in the low Speed Range (영구자석형 동기전동기의 저속도 영역에서 제어 성능 개선)

  • Won, Chung-Yuen;Yu, Jae-Sung;Jun, Bum-Su;Hwang, Sun-Mo;Kim, Yuen-Chung;Lee, Song-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.70-79
    • /
    • 2005
  • In this paper, improvement method of control performance by a full-order observer using reduced-order state equation is proposed in the low speed range. Full-order observer using reduced-order state equation is the motor speed and the disturbance torque observer. The proposed algorithm is very stable in the low speed range about 1.9[rpm]. The disturbance torque in the motor drive system degrades speed control performance in the low speed range. The proposed algorithm estimated both motor speed and disturbance torque. The estimated disturbance torque is used as a feedforward value in output of the speed controller, As a result, it improves the response of load torque in the low speed range(1.9rpm).

The State Estimation by Unknown Disturbance Observer of Underwater Vehicle System for Robust Control (강인한 제어를 위한 수중이동시스템의 상태추정에 대한 연구)

  • Lee, Jin-Woo;Kim, Hwan-Seong;An, Young-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • In this paper, and estimation method for estimating the states of underwater vehicle systems with external unknown disturbance is proposed. First, the dynamics of underwater vehicle are induced by Taylor series expansion in the vertical plane and horizontal plane, respectively. For constructing the system model, the external efforts, i.e., the sea surface disturbances, the current, wave and etc., are regarded as external unknown disturbances. Thus the disturbance is added as external input into state-space form of underwater vehicle system. To estimate the state of systems with unknown disturbance, a disturbance observer which does not effected the external unknown input is proposed, and the existence condition for the observer is given. Finally, the effectiveness of the proposed disturbance observer for robust control of underwater vehicle systems is verified by using numerical simulation.

Robust Control of Permanent Magnet Synchronous Motor Using Disturbance Observer and Sliding Mode Controller (외란관측기와 슬라이딩 모드 제어기를 이용한 영구자석 동기전동기의 강인제어)

  • Lee, Youn-kyu;Ahn, Ho-gyun;Yoon, Tae-sung;Kwak, Gun-pyong;Park, Seung-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1660-1670
    • /
    • 2015
  • Many robust controllers have been studied but most are considered in the theoretical point of view and can be used for only specific systems. So, in this paper, a more practical robust controller is proposed based on SMC(sliding mode control) and disturbance observer. The integral sliding mode is used to eliminate the reaching phase and minimizes the steady-state error, and the disturbance observer reduces the chattering due to the switching input for the bounded disturbances. The inevitable chattering of SMC is also removed by replacing the sign function with dead-zone function. The proposed controller has the improved steady-state error and robustness compared to PID controller.

신경회로망을 이용한 PMSM의 속도 및 위치센서리스제어

  • 이영실;이정철;이홍균;정택기;정동화
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.372-377
    • /
    • 2003
  • 센서리스 제어는 고정자 전압과 전류, 역기전력 등과 같은 정보를 이용하여 회전자의 속도 및 위치를 추종하는 방법이다. 센서리스는 수학적 모델, 물리적인 현상 및 제어 이론을 이용하는 방법으로 분류되어 연구되고 있다. 수학적인 모델을 이용하는 방법에는 고정자 전압에서 고정자 저항에 의한 전압 강하분을 제거한 항을 적분하여 자속의 위치를 추정한다.[1] 물리적인 현상을 이용하는 방법에는 INFORM 방법과 고주파 전압을 주입하는 방법 등이 있다. 제어이론을 이용하는 방법은 MRAC, EKF 및 상태관측기[2]등을 이용하는 방법이다.(중략)

  • PDF

상태관측기를 이용한 IPMSM의 센서리스 벡터제어

  • 정택기;이정철;이홍균;이영실;정동화
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.402-407
    • /
    • 2003
  • IPMSM은 회전자 위치의 정확한 정보를 알기 위하여 엔코더와 리졸버와 같은 위치센서를 사용한다. 이러한 센서는 무게와 부피가 증가하고 가격이 높으며 온도와 외란 등에 매우 민감하다. 따라서 AC 드라이브의 센서리스 벡터제어에 많은 관심을 가지게 되었다. 센서리스는 수학적 모델, 물리적인 현상 및 제어이론을 이용하는 방법으로 분류되어 연구되고 있다. 수학적인 모델을 이용하는 방법에는 고장자 전압에서 고정자 저항에 의한 전압 강하분을 제거한 항을 적분하여 자속의 위치를 추정한다.(중략)

  • PDF