• Title/Summary/Keyword: 상전하

Search Result 1,044, Processing Time 0.026 seconds

Effect of Solder Structure on the In-situ Intermetallic Compounds growth Characteristics of Cu/Sn-3.5Ag Microbump (Cu/Sn-3.5Ag 미세범프 구조에 따른 실시간 금속간화합물 성장거동 분석)

  • Lee, Byeong-Rok;Park, Jong-Myeong;Ko, Young-Ki;Lee, Chang-Woo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.45-51
    • /
    • 2013
  • Thermal annealing tests were performed in an in-situ scanning electron microscope chamber at $130^{\circ}C$, $150^{\circ}C$, and $170^{\circ}C$ in order to investigate the effects of solder structure on the growth kinetics of intermetallic compound (IMC) in Cu/Sn-3.5Ag microbump. Cu/Sn-3.5Ag($6{\mu}m$) microbump with spreading solder structure showed $Cu_6Sn_5$ and $Cu_3Sn$ phase growths and then IMC phase transition stages with increasing annealing time. By the way, Cu/Sn-3.5Ag($4{\mu}m$) microbump without solder spreading, remaining solder was transformed to $Cu_6Sn_5$ right after bonding and had only a phase transition of $Cu_6Sn_5$ to $Cu_3Sn$ during annealing. Measured activation energies for the growth of the $Cu_3Sn$ phase during the annealing were 0.80 and 0.71eV for Cu/Sn-3.5Ag($6{\mu}m$) and Cu/Sn-3.5Ag($4{\mu}m$), respectively.

A study on synthesis of $Li_{x}Mn_{2}O_{4}$ for asecondary battery with various $MnO_{2}$ structure (다양한 $MnO_{2}$ 구조에 따른 2차전지용 $Li_{x}Mn_{2}O_{4}$ 합성에 관한 연구)

  • 김익진;이영훈;이종호;이재한;장동환;이경희;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.600-608
    • /
    • 1996
  • Specific structural properties of Li intercalation reaction into the spinel relatedmanganese dioxide, $Li_{x}Mn_{2}O_{4}(0.2{\leq}x{\leq}2.0)$, are investigated by X-ray diffractional and electrochemical studies of Li/1M $LiClO_{4}$-propylene carbonate solution/$Li_{x}Mn_{2}O_{4}$ cell. The effect of the chemical composition and the reaction temperature on electrochemical parameter of $Li_{x}Mn_{2}O_{4}$ are studied by the phenomena of phase-transition, analysis of crystal lattice, fine structure, and thermal analysis. Treatment of the spinel $Li_{x}Mn_{2}O_{4}$ with aqueous acid was found to result in conversiton of $Li_{x}Mn_{2}O_{4}$ to nearly pure $MnO_{2}$, as evidenced by a reduction in the lattice constant $a_{c}$ from 8.255 to $8.031\;{\AA}$. At a composition range of $0.2{\leq}x{\leq}0.6$ in $Li_{x}Mn_{2}O_{4}$ the reduction proceeded in a homogeneous phase, which was characterized by a constant voltage of 3.9~3.7 V together with a lattice constant of $8.255\;{\AA}$.

  • PDF

Phase transformation and magnetic properties of NiFe thin films on Si(100) wafer and SiO2/Si(100) substrate by co-sputtering (Si(100) wafer와 SiO2/Si(100) 기판에 동시 스퍼터링법으로 증착된 NiFe 합금 박막의 상변화 및 자기적 특성)

  • Kang, Dae-Sik;Song, Jong-Han;Nam, Joong-Hee;Cho, Jeong-Ho;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.216-220
    • /
    • 2010
  • Ni-Fe alloys have various applications such as thin film inductor, thin film transformer, magnetic head's shield case, etc. Magnetic properties of Ni-Fe thin films depend on the process parameters such as thickness, contents, deposition rate, substrates, etc. In this study, NiFe films with a thickness of about 150nm were deposited on Si(100) wafer and $SiO_2$/Si(100) substrate at room temperature by a DC magnetron co-sputtering using Fe and Ni targets. Their phase formation and magnetic properties as a function of annealing temperature were investigated with XRD, FE-SEM and VSM. The assputtered films have BCC structure. With increasing annealing temperature, NiFe thin film for $SiO_2$/Si(100) substrate transformed completely from BCC to FCC phase above $500^{\circ}C$, but some BCC phase remained above $500^{\circ}C$ on Si(100) wafer. For samples annealed at $450^{\circ}C$, squareness ratio of NiFe thin film shows peak value and its saturation magnetization is around 0.0118 emu, which means that the optimum annealing temperature of NiFe thin film seems to be $450^{\circ}C$. The saturation magnetization of films decreased rapidly above the annealing temperature of $500^{\circ}C$ due to phase transformation from BCC to FCC phase.

X-ray Powder Diffraction Structural Phase-transition Study of $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$using the Rietveld Method of Analysis (분말 X-선 회절의 리트벨트 해석법을 이용한 $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$계에서의 구조 상전이 특성연구)

  • Jeong, Hun-Taek;Kim, Ho-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.748-753
    • /
    • 1995
  • Solid solution of NaNb $O_3$70 mol% and SrTi $O_3$30 mol% was single phase. A broad dielectric peak was found at about l00K. Crystal structure was analysed at room temperature and 12K using Rietveld analysis. The unit cell was assigned to have a a doubled lattice parameter of simple perovskite sturcture at room temperatue, the structure was orthorombic with space group Pmmn. At 12K, the structure was also orthorombic with space group Pnma. This structure change with temperature was due to the distortion of oxygen octahedron. This distortion of oxygen octahedron was made by the decrease of (Ti, Nb)-O bounds length with no variation of (Ti, Nb)-O-(Ti, Nb) bound angle. Therefore the broad dielectirc peak about l00K was attributed to the structural change casued by oxygen octahedron distortion.

  • PDF

Manufacture and Application of anhydrous calcium sulfate from flue gas desulfurization gypsum (排煙脫黃石膏로부터 無水石膏 製造 및 適用 特性)

  • Hyun, Jong-Yeong;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.10-18
    • /
    • 2005
  • The manufacture property of anhydrous calcium sulfate (anhydrite Ⅱ) from flue gas desulfurization (FGD) gypsum discharged from domestic thermoelectric power plants to apply as an auxiliary material of cement and concrete by high temperature treatment were investigated. The FGD gypsum was completely converted to anhydrite Ⅱ at the temperature of 700$^{\circ}C$ and the retention time of 1 hr. In the phase transformation process, particle size was also changed. The chemical composition, particle size and heat property of anhydrite Ⅱ made from the FGD gypsum were similar to them of natural gypsum. In the leaching test of sulfate ion (SO$_4^{2-}$) at the temperature of 90$^{\circ}C$ and the retention time of 1 hr, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ that was sintered at 700$^{\circ}C$ for 1 hr was about 50 wt.% based on that of natural gypsum. In addition, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ by adding the slaked lime of 3 wt.% decreased about 70 wt.% comparing with that of natural gypsum. In the application test, the compressive strength of cement and concrete manufactured by using the anhydrite Ⅱ as an auxiliary material were similar or superior compared with them of cement and concrete done by natural gypsum as an auxiliary material.

Synthesis of Thermosensitive and Biodegradable Methoxy Poly(ethylene glycol)-Polycaprolactone and Methoxy Poly(ethylene glycol)-Poly(lactic acid) Block Copolymers (온도감응 및 생분해성 폴리에틸렌 글리콜-폴리카프로락톤과 폴리에틸렌 글리콜-폴리락타이드 공중합체의 합성)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • The sol to gel transition of aqueous solution of block copolymers consisting of methoxy poly (ethylene glycol) (MPEG) and biodegradable polyesters such as $\varepsilon$-caprolactone and L-lactide was investigated as a function of temperature. MPEG-PCL was prepared by ring opening polymerization of $\varepsilon$-caprolactone in the presence of HClㆍEt$_2$O as monomer activator at room temperature. Also, MPEG-PLLA was prepared by ring opening polymerization of L-lactide in the presence of stannous octoate at 115$^{\circ}C$. The properties of block copolymers were investigated by $^1$H-NMR, IR, and GPC as well as the observation of thermo sensitive phase transition in aqueous solution. As the hydrophobic block length increased, the sol to gel transition temperature increased and curve of that steepen to lower concentration. To confirm the gel formation at body temperature, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After surging, we investigated the gelation in mice. The results obtained in this study confirmed the feasibility as biomaterials of injectable implantation for controlled release of drug and protein delivery.

동시 스퍼터링 방법에 의한 Cu-In 금속층 증착 및 저온 안정상에 대한 열역학적 고찰

  • 김상덕;김수길;김형준;윤경훈;송진수
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.129-129
    • /
    • 2000
  • 태양전지는 태양광에너지를 바로 전기에너지로 전환시키는 소자이다. 최근에는 다결정 태양전지의 응용가능성에 대한 연구가 활발히 진행되어 오고 있다. 이 중 CuInSe2는 여러 가지 좋은 물성을 가지고 있어서, 저가의 고효율 태양전지를 위한 광흡수층 재료로 주목받고 있다. 현재까지 다양한 방법이 시도되었지만, 10% 이상의 고효율을 가지는 고품질을 박막을 얻는 방법은 진공증발증착법과 selenization 방법뿐이다. 이 중 진공증발증착법에 의하여 형성된 박막을 이용하여 가장 높은 효율의 태양전지를 얻을 수 있으나, 진공 장비의 대면적화가 힘들기 때문에 대면적 태양전지 제조가 힘들다는 단점이 있다. 따라서 selenization 방법을 이용하여 CuInSe2 박막을 제조하는 것이 가장 유망한 방법이라 할 수 있다. Selenization 방법은 Cu-In 금속층을 제작한 뒤 이를 selenium과 반응을 시키는 방법이다. 따라서 이 방법을 이용하여 박막을 제조할 때는 Cu-In 금속층의 물성 조절이 이후 생성되는 CuInSe2 박막의 물성향상에 필수적이다. 따라서 Cu-In 금속층의 물성에 대해 많은 연구가 이루어지고 있다. 하지만 Cu-In 이 성분계에서 알려진 반가 없다. 저온에서는 반응속도론적으로 매우 느리게 반응이 일어나기 때문에 열역학적으로 안정한 상을 얻기가 힘들기 때문이다. 따라서 본 실험에 앞서 각 제조 조건에 따른 열역학적인 안정상을 계산하였다. 그 결과, 상온에서 Cu의 양이 증가함에 따라, In$\longrightarrow$CuIn2$\longrightarrow$Cu11In9$\longrightarrow$Cu7In3 상으로 변화하였다. 9$0^{\circ}C$이하의 온도에서는 CuIn2 상이 안정하였고, 10$0^{\circ}C$ 이상의 온도에서는 Cu11In9 상 두 가지로 존재하였고, Cu/In 인가전력비를 변화시켰을 때 조성비가 선형적으로 변하였다. 즉, Cu-In 동시스퍼터링법은 원하는 조성을 간편한 방법으로 정확하게 조절할 수 있는 방법이라 할 수 있다. 증착 온도를 변화시켰을 때는 9$0^{\circ}C$ 이하의 낮은 온도에서 존재하던 CuIn2 상이 10$0^{\circ}C$이상의 온도에서는 완전히 사라지고 In과 CuIn2 상이 사라지고 In 상과 Cu11In9 상이 나타났다. 상전이를 위하여 30$0^{\circ}C$의 높은 열처리 온도가 필요한 것은, 밀 저온 안정상이 형성된 뒤 각 원소들의 확산에 의해 상전이가 일어나기 때문에 이를 위한 충분한 열에너지를 가질 수 있는 온도가 필요하기 때문이다. 조성을 일정하게 유지하면서 챔버 압력을 변화시켰을 때는 형성되는 상의 미세구조난 결정성은 일정하였다. 인가전력, 증착온도, 챔버 압력 변화에 따른 상변화는 앞서 계산한 열역학적 결과와 정확히 일치하였다. 이는 동시스퍼터링 방법이 각 입자들을 원소 단위에서 균일하게 혼합할 수 잇는 방법이고, 또 입자들이 높은 에너지를 가지고 있기 때문이다. 즉, 원소 단위에서 균일한 반응을 하고, 가장 안정한 위치로 쉽게 이동할 수 있기 때문에 열역학적으로 안정한 상을 형성할 수 있는 것이다.

  • PDF

The Effect of Ba and Fe Concentration on Soft Magnetic Properties of Z-Type Barium Ferrite (Z-Type 바리움 페라이트 분말의 연자성 특성에 미치는 Ba 및 Fe 농도의 영향)

  • Cho, Kwang-Muk;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • Z-type barium ferrite [($Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$, $Ba_{3+{\delta}}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$ ${\delta}$ = 3, 5, 7, 13 wt%. $Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24+{\delta}}O_{41}$ ${\delta}$ = 5, 7, 10 wt% )] were synthesized using co-precipitation method. The microstructure and magnetic properties of synthesized particles were investigated. In all prepared particles M-type Ba ferrite is identified with Z-type Ba ferrite together. It is found that particles having 7 wt% for Ba and 5 wt% for Fe excess addition revealed high saturation magnetization, respectively. All synthesized particles showed relatively high coercivity for device application. This result may be attributed to the contribution of M-type Ba ferrite. Ba and Fe excess addition was not affected to the structural change of CoZnZ Ba ferrite. The certain amount of excess additions of Ba and Fe and the 2 step heat-treatment may be beneficial to the improvement of soft magnetic properties of Z-type barium hexa-ferrite

The 33-mode Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal under Stress and Electric Field (압축하중 및 전계 인가에 따른 PIN-PMN-PT 단결정의 33-모드 유전 및 압전특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.91-96
    • /
    • 2020
  • The 33-mode dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single crystals were measured under large electric field and compressive stress. The phase transition from the low temperature rhombohedral to the high temperature tetragonal structure was observed in the range of 110~140℃, and the Curie temperature changing to the cubic structure was about 165℃. The polarization change according to the compressive stress and electric field was measured. Relative dielectric constant was calculated from the slope of the polarization curve applied to the electric field, and the calculated relative dielectric constant increased as the applied stress increased, and the relative dielectric constant decreased as the applied electric field increased. The strain according to the compressive stress and electric field change was measured, the piezoelectric constant was calculated from the slope of the curve, and the phase transition according to the application of pressure was confirmed. In the case of practical application as an underwater or medical ultrasonic actuator, it is necessary to properly design the magnitude of the compressive stress applied to the device and the DC bias in order to maintain linear driving.

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC) (경량 기포콘크리트를 이용한 광물탄산화 연구)

  • Chae, Soo-Chun;Lee, Seung-Woo;Bang, Jun-Hwan;Song, Kyoung-Sun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.439-450
    • /
    • 2020
  • Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.