• Title/Summary/Keyword: 상위어 추출

Search Result 57, Processing Time 0.022 seconds

Development of the Algorithm for the Automatic Extraction of Broad Term (상위어 자동추출 알고리즘 개발)

  • 최유미;사공철
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1998.08a
    • /
    • pp.227-230
    • /
    • 1998
  • 문헌정보학분야의 용어사전을 이용한 자동시소러스 구축을 위한 첫단계로$\ulcorner$문헌정보학 용어사전$\lrcorner$ MRD를 구성하고 이를 이용하여 상위어 자동 추출알고리즘을 개발하였다. MRD구성시 전처리과정을 통하여 상위어 추출에 불필요한 정보가 수록되는 것을 방지하였다. 상위어 추출을 위한 알고리즘 개발은 무작위 표본추출을 통하여 $\ulcorner$문헌정보학 용어사전$\lrcorner$에 기술된 문장의 구문적 특성을 분석한 후, 이 구문정보를 이용하여 수행하였다. 본 연구에서 제시된 알고리즘의 효율성 평가결과 89.4%의 정확도를 보였다.

  • PDF

The Generation Methods of Composition Noun For Efficient Index Term Extraction (고빈도어를 이용한 복합명사 색인어 추출 방안)

  • Kim, Mi-Jin;Park, Mi-Seong;Jang, Hyeok-Chang;Choi, Jae-Hyeok;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.121-129
    • /
    • 1998
  • 정보검색이나 자동색인 시스템에서는 정확한 색인어의 추출이 시스템의 성능을 좌우하게 된다. 따라서 정확한 색인어의 추출이 매우 중요하다. 본 논문에서는 정보 검색시에 보다 정확한 문서를 찾아줄 수 있도록, 출현 고빈도어를 이용하여 효율적인 색인어 추출을 위한 합성 명사 생성방안을 제시한다. 이를 위하여 문서 내에서 출현 빈도가 높은 명사, 즉 상위 $30%{\sim}40%$의 고빈도 명사에 합성 및 분해 규칙을 적용하여 합성명사 색인어를 추출한다. 또한 본 논문에서 제시한 상위 $30%{\sim}40%$ 고빈도 명사합성에 대한 타당성을 검증하기 위하여 적절한 명사합성 빈도를 구한다. 제안한 방법을 적용한 결과 300어절 이하의 짧은 문서는 출현빈도 상위 30%까지의 명사를 합성했을 경우 저빈도 누락이 작았고 300어절 이상의 문서는 출현빈도 40%까지 합성하면 저빈도 누락이 상당히 줄어듦을 알 수 있었다. 그리하여 전체 색인어의 개수를 줄였고 색인어의 정확률을 높였다.

  • PDF

Visualization Study of Character Type by Emotion Word Extraction (감정어 추출을 통한 등장인물 성향 가시화 연구)

  • Baek, Yeong Tae;Park, Seung-Bo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.31-32
    • /
    • 2013
  • 본 논문에서는 영화의 등장인물의 성향을 파악하기 위해 시나리오의 대사로부터 감정어를 추출하고, 등장인물의 감정어들을 긍정, 부정, 중립의 3개로 단순화하여 등장인물의 성향을 가시화 시켜주는 방법을 제안한다. 대사로부터 감정어를 추출하기 위해 WordNet 기반의 감정어 추출 방법을 제안한다. WordNet은 단어 간에 상위어와 하위어, 유사어 등의 관계로 연결된 네트워크 구조의 사전이다. 이 네트워크 구조에서 최상위의 감정 항목과의 거리를 계산하여 단어별 감정량을 계산하여 대사를 30 차원의 감정 벡터로 표현한다. 등장인물별로 추출된 감정 벡터를 긍정, 부정, 중립의 3개의 차원으로 단순화 하여 등장인물의 성향을 표현한다.

  • PDF

Learning Rules for Identifying Hypernyms in Machine Readable Dictionaries (기계가독형사전에서 상위어 판별을 위한 규칙 학습)

  • Choi Seon-Hwa;Park Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.171-178
    • /
    • 2006
  • Most approaches for extracting hypernyms of a noun from its definitions in an MRD rely on lexical patterns compiled by human experts. Not only these approaches require high cost for compiling lexical patterns but also it is very difficult for human experts to compile a set of lexical patterns with a broad-coverage because in natural languages there are various expressions which represent same concept. To alleviate these problems, this paper proposes a new method for extracting hypernyms of a noun from its definitions in an MRD. In proposed approach, we use only syntactic (part-of-speech) patterns instead of lexical patterns in identifying hypernyms to reduce the number of patterns with keeping their coverage broad. Our experiment has shown that the classification accuracy of the proposed method is 92.37% which is significantly much better than that of previous approaches.

The Automatic Extraction of Hypernyms and the Development of WordNet Prototype for Korean Nouns using Korean MRD (Machine Readable Dictionary) (국어사전을 이용한 한국어 명사에 대한 상위어 자동 추출 및 WordNet의 프로토타입 개발)

  • Kim, Min-Soo;Kim, Tae-Yeon;Noh, Bong-Nam
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.847-856
    • /
    • 1995
  • When a human recognizes nouns in a sentence, s/he associates them with the hyper concepts of onus. For computer to simulate the human's word recognition, it should build the knowledge base (WordNet)for the hyper concepts of words. Until now, works for the WordNet haven't been performed in Korea, because they need lots of human efforts and time. But, as the power of computer is radically improved and common MRD becomes available, it is more feasible to automatically construct the WordNet. This paper proposes the method that automatically builds the WordNet of Korean nouns by using the descripti on of onus in Korean MRD, and it proposes the rules for extracting the hyper concepts (hypernyms)by analyzing structrual characteristics of Korean. The rules effect such characteristics as a headword lies on the rear part of sentences and the descriptive sentences of nouns have special structure. In addition, the WordNet prototype of Korean Nouns is developed, which is made by combining the hypernyms produced by the rules mentioned above. It extracts the hypernyms of about 2,500 sample words, and the result shows that about 92per cents of hypernyms are correct.

  • PDF

The Method of Deriving Keywords Using Concept Rules (개념 규칙을 이용한 키워드 도출방법)

  • 이태헌;박기홍
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.685-687
    • /
    • 2002
  • 일반적으로 인간이 사용하는 몇 개의 주요단어를 이용하여, 문서의 분야나 주제어가 되는 일본어 키워드를 추출하는 점에 주목한다. 먼저, 학술논문에서 저자 자신이 부여한 키워드 중 분야 명이나 주제어가 문서 중에 출현하지 않는 경우를 분석하고, 단어의 개념정보를 기초로 복합어 생성규칙을 구축한다. 문서 의미와 상관없는 키워드의 추출을 억제하기 위해 중요도 결정법을 새롭게 제안한다. 추출된 키워드의 타당성 검사를 위해 자연.음성언어에 관한 일본어 논문 65파일의 타이틀과 초록부분을 이용하여 추출된 키워드의 타당성에 대한 실험을 한 결과 추출 정밀도는 중요도의 상위 1개를 출력한 경우 75%가 되어 제안방법의 유효성을 확인할 수 있었다.

  • PDF

A study on the Stochastic Model for Sentence Speech Understanding (문장음성 이해를 위한 확률모델에 관한 연구)

  • Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.829-836
    • /
    • 2003
  • In this paper, we propose a stochastic model for sentence speech understanding using dictionary and thesaurus. The proposed model extracts words from an input speech or text into a sentence. A computer is sellected category of dictionary database compared the word extracting from the input sentence calculating a probability value to the compare results from stochastic model. At this time, computer read out upper dictionary information from the upper dictionary searching and extracting word compared input sentence caluclating value to the compare results from stochastic model. We compare adding the first and second probability value from the dictionary searching and the upper dictionary searching with threshold probability that we measure the sentence understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case, probability ($\alpha$) of high level word is 0.9 and threshold probability ($\beta$) is 0.38.

Automatic Text Summarization Using Thesaurus (시소러스를 이용한 문서 자동 요약)

  • 이창범;박혁로
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.352-354
    • /
    • 2001
  • 문서 자동요약은 입력된 문서에 대해 컴퓨터가 자동으로 요약을 생성하는 과정을 의미한다. 즉, 컴퓨터가 문서의 기본적인 내용을 유지하면서 문서의 복잡도 즉 문서의 길이를 줄이는 작업이다. 효율적인 정보 접근을 제공함과 동시에 정보 과적재를 해결하기 하기 위한 하나의 방법으로 문서 자동요약에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 의미기반 정보검색용 시소러스(thesaurus)를 이용한 문서 자동요약을 제안한다. 제안한 방법에서는 단어간의 연관 관계 즉, 동의어, 유의어, 상위어, 하위어 관계를 문서 요약에 이용한다. 크게 연관 사슬 형성 단계, 중심 문장 추출 단계, 요약 생성 단계의 새단계로 나누어 요약을 생성한다. 수동 요약된 신문기사를 대상으로 평가한 결과 평균 66%가 일치하였다.

  • PDF

Detection of Character Emotional Type Based on Classification of Emotional Words at Story (스토리기반 저작물에서 감정어 분류에 기반한 등장인물의 감정 성향 판단)

  • Baek, Yeong Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.131-138
    • /
    • 2013
  • In this paper, I propose and evaluate the method that classifies emotional type of characters with their emotional words. Emotional types are classified as three types such as positive, negative and neutral. They are selected by classification of emotional words that characters speak. I propose the method to extract emotional words based on WordNet, and to represent as emotional vector. WordNet is thesaurus of network structure connected by hypernym, hyponym, synonym, antonym, and so on. Emotion word is extracted by calculating its emotional distance to each emotional category. The number of emotional category is 30. Therefore, emotional vector has 30 levels. When all emotional vectors of some character are accumulated, her/his emotion of a movie can be represented as a emotional vector. Also, thirty emotional categories can be classified as three elements of positive, negative, and neutral. As a result, emotion of some character can be represented by values of three elements. The proposed method was evaluated for 12 characters of four movies. Result of evaluation showed the accuracy of 75%.

Word Sense Disambiguation Method Using Co-occurrence Information (공기정보를 이용한 단어 의미 중의성 해결 방안)

  • Park, Yo-Sep;Kim, Gyeong-Im;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.177-178
    • /
    • 2010
  • 단어 의미 중의성은 자연언어처리 분야에서의 주요 관심 분야이다. 한국어에서의 단어 의미 중의성 문제는 다른 언어에 비하여 연구가 미흡한 상태이다. 기존 연구에서는 빈도 수에 기반한 공기 정보 벡터를 이용한 방법에서 처리되지 못하는 경우가 발생하였다. 또한 사전에 기반한 상위어 추출 시에 정형화된 형태가 아닌 경우에 어려움이 발생하였다. 본 논문에서는 상호정보량을 추가하여 공기 정보 처리 과정 시에 발생하는 오류를 최소화 하였다. 또한 대상 명사의 상위어 추출 문제를 해결하기 위해 어휘 지식 베이스를 적용하였다.

  • PDF