• Title/Summary/Keyword: 상용 소프트웨어

Search Result 640, Processing Time 0.023 seconds

Numerical analysis of heat dissipation performance of heat sink for IGBT module depending on serpentine channel shape (수치 해석을 통한 절연 게이트 양극성 트랜지스터 모듈의 히트 싱크 유로 형상에 따른 방열 성능 분석)

  • Son, Jonghyun;Park, Sungkeun;Kim, Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.415-421
    • /
    • 2021
  • This study analyzed the effect on the cooling performance of the channel shape of a heat sink for an insulated gate bipolar transistor (IGBT). A serpentine channel was used for this analysis, and the parameter for the analysis was the number of curves. The analysis was conducted using computational fluid dynamics with the commercial software ANSYS fluent. One curve in the channel improved the heat dissipation performance of the heat sink by up to 8% compared to a straight-channel heat sink. However, two curves in the channel could not improve the heat discharge performance further. Instead, the two curves caused a higher pressure drop, which induces parasitic loss for the pumping of coolant. The pressure drop of the two-curve channel case was 2.48-2.55 times larger than that of a one-curve channel. This higher pressure drop decreased the heat discharge efficiency of the heat sink with two curves. The discharge heat per unit pressure drop was calculated, and the result of the straight heat sink was highest among the analyzed cases. This means that the heat discharge efficiency of the straight heat sink is the highest.

Evaluation of Structural Robustness of External Fuel Tank and Pylon for Military Aircraft under Random Vibration (랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.777-783
    • /
    • 2021
  • Aircraft are affected by various vibrations during maneuvering. These vibrations may have a fatal effect on the survival of aircraft in some cases, so the safety of components applied to the aircraft should be proven against various vibrations through random vibration analysis. In this study, the structural robustness of an external fuel tank and pylon for military aircraft was evaluated under random vibration conditions using commercial software, MSC Random. In the random vibration analysis, a frequency response analysis was performed by imposing a unit load on the boundary condition point, and then excitation was performed with a PSD profile. In this process, the required mode data was extracted through a modal analysis method. In addition, the random vibration profile specified in the US Defense Environment Standard was applied as random vibration conditions, and the PSD profile given in units of G's was converted into units of gravitational acceleration. As a result of the numerical analysis, we evaluated the structural robustness of the external fuel tank and pylon by identifying the safety margins of beam elements, shell elements, and solid elements in a numerical model for random vibration in the x, y, and z directions.

A Study of Pervasive Roaming Services with Security Management Framework (퍼베이시브 로밍 서비스를 위한 보안 관리 프레임워크)

  • Kim, Gwan-Yeon;Hwang, Zi-On;Kim, Yong;Uhm, Yoon-Sik;Park, Se-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.4
    • /
    • pp.115-129
    • /
    • 2007
  • The ubiquitous and autonomic computing environments is open and dynamic providing the universal wireless access through seamless integration of software and system architectures. The ubiquitous computing have to offer the user-centric pervasive services according to the wireless access. Therefore the roaming services with the predefined security associations among all of the mobile devices in various networks is especially complex and difficult. Furthermore, there has been little study of security coordination for realistic autonomic system capable of authenticating users with different kinds of user interfaces, efficient context modeling with user profiles on Smart Cards, and providing pervasive access service by setting roaming agreements with a variety of wireless network operators. This paper proposes a Roaming Coordinator-based security management framework that supports the capability of interoperator roaming with the pervasive security services among the push service based network domains. Compared to traditional mobile systems in which a Universal Subscriber Identity Module(USIM) is dedicated to one service domain only, our proposed system with Roaming Coordinator is more open, secure, and easy to update for security services throughout the different network domains such as public wireless local area networks(PWLANs), 3G cellular networks and wireless metropolitan area networks(WMANs).

A Study on Systematic Firmware Security Analysis Method for IoT Devices (체계적인 IoT 기기의 펌웨어 보안 분석 방법에 관한 연구)

  • Kim, Yejun;Gim, Jeonghyeon;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.31-49
    • /
    • 2021
  • IoT devices refer to embedded devices that can communicate with networks. Since there are various types of IoT devices and they are widely used around us, in the event of an attack, damages such as personal information leakage can occur depending on the type of device. While the security team analyzes IoT devices, they should target firmware as well as software interfaces since IoT devices are operated by both of them. However, the problem is that it is not easy to extract and analyze firmware and that it is not easy to manage product quality at a certain level even if the same target is analyzed according to the analyst's expertise within the security team. Therefore, in this paper, we intend to establish a vulnerability analysis process for the firmware of IoT devices and present available tools for each step. Besides, we organized the process from firmware acquisition to analysis of IoT devices produced by various commercial manufacturers, and we wanted to prove their validity by applying it directly to drone analysis by various manufacturers.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Building Information Modeling of Caves (CaveBIM) in Jeju Island at a Specific Site below a Road at Jaeamcheon Lava Tube and at a Broader Scale for Hallim Town (제주도 한림 재암천굴과 도로 교차구간의 CaveBIM 구축)

  • An, Joon-Sang;Kim, Wooram;Baek, Yong;Kim, Jin-Hwan;Lee, Jong-Hyun
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.449-466
    • /
    • 2022
  • The establishment of a complete geological model that includes information about all the various components at a site (such as underground structures and the compositions of rock and soil underground space) is difficult, and geological modeling is a developing field. This study uses commercial software for the relatively easy composition of geological models. Our digital modeling process integrates a model of Jeju Island's 3D geological information, models of cave shapes, and information on the state of a road at the site's upper surface. Among the numerous natural caves that exist in Jeju Island, we studied the Jaeamcheon lava tube near Hallim town, and the selected site lies below a road. We developed a digital model by applying the principles of building information modeling (BIM) to the cave (CaveBIM). The digital model was compiled through gathering and integrating specific data: relevant processes include modeling the cave's shape using a laser scanner, 3D geological modeling using geological information and geophysical exploration data, and modeling the surrounding area using drones. This study developed a global-scale model of the Hallim region and a local-scale model of the Jaeamcheon cave. Cross-validation was performed when constructing the LSM, and the results were compared and analyzed.