• Title/Summary/Keyword: 상아질 접착

Search Result 164, Processing Time 0.028 seconds

Shear bond strength of a self-adhesive resin cement to resin-coated dentin (간접수복용 복합레진과 자가 접착 레진 시멘트의 전단결합강도에 레진코팅법이 미치는 영향)

  • Hong, Jee-Youn;Park, Cheol-Woo;Heo, Jeong-Uk;Bang, Min-Ki;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • Purpose: The aims of this study were to evaluate the effect of a resin coating on the shear bond strength of indirect composite restoration bonded to dentin with a self adhesive resin cement and to compare the shear bond strength with that of a conventional resin cement. Materials and methods: The occlusal enamels of thirty six extracted noncarious human molars were removed until the dentin flat surfaces of the teeth were exposed. Then, they were divided into 3 groups. The dentin surfaces of group 1 and 3 were left without any conditioning, while the dentin surfaces of group 2 were resin-coated with Clearfil SE bond and a flowable resin composite, Metafil Flo. After all specimens were temporized for 24 hours, indirect composite resin blocks fabricated by Tescera were bonded to dentins by Unicem for group 1 and 2, and by Panavia F for group 3. After 48 hours of water storage, shear bond strengths were measured. The data was analyzed with one-way analysis of variance and multiple comparison test (Tukey method). Results: The shear bond strengths of Unicem applied to resin coated dentin surfaces were significantly higher than those of Unicem and Panavia F used to uncoated dentin surfaces (P<.0001). Conclusion: Application of a resin coating to the dentin surface significantly improved the shear bonding strength of a self adhesive resin cement in indirect restoration.

Comparative evaluation of micro-shear bond strength between two different luting methods of resin cement to dentin (합착 술식에 따른 레진 합착제의 상아질에 대한 미세전단결합강도의 비교 연구)

  • Lee, Yoon-Jeong;Park, Sang-Jin;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.283-293
    • /
    • 2005
  • The purpose of this study was to evaluate the effect of dual bonding technique by comparing microshear bond strength between two different luting methods of resin cement to tooth dentin. Three dentin bonding systems(All-Bond 2, One-Step, Clearfil SE Bond), two temporary cements (Propac, Freegenol) were used in this study. In groups used conventional luting procedure, dentin surfaces were left untreated. In groups used dual bonding technique, three dentin bonding systems were applied to each dentin surface. All specimens were covered with each temporary cement. The temporary cements were removed and each group was treated using one of three different dentin bonding system. A resin cement was applied to the glass cylinder surface and the cylinder was bonded to the dentin surface. Then, micro-shear bond strength test was performed. For the evaluation of the morphology at the resin/dentin interface, SEM examination was also performed. 1. Conventional luting procedure showed higher micro-shear bond strengths than dual boning technique. However, there were no significant differences. 2. Freegenol showed higher micro-shear bond strengths than Propac, but there were no significant differences. 3. In groups used dual bonding technique, SE Bond showed significantly higher micro-shear bond strengths in One-Step and All-Bond 2 (p<0.05), but there was no significant difference between One-Step and All-Bond 2. 4. In SEM observation, with the use of All-Bond 2 and One-Step, very long and numerous resin tags were observed. This study suggests that there were no findings that the dual bonding technique would be better than the conventional luting procedure.

BOND STRENGTH AND MICROLEAKAGE IN RESIN BONDING TO TOOTH STRUCTURE (치질접착에서 접착강도와 변연누출)

  • Kim, Jin-Hee;Park, Jeong-Won;Park, Jin-Hoon;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.570-577
    • /
    • 1999
  • Intuitively, higher bond strengths should result in less leakage. However, the relationship between bond strengths and microleakage value is complex and not clearly understood. The purpose of this study was to evaluate the relationship between tensile bond strengths and microleakage values in the same restorations to understand the behavior of resin bonding to tooth structure. One-hundred and twenty enamel or dentin specimens from freshly extracted bovine mandibular incisors were used. The specimen was treated with 32% phosphoric acid for 15 seconds and rinsed for 20 seconds. the teeth were divided into four groups by means of wet bonding technique or dry bonding. One-Step$^{TM}$ adhesive were applied to the specimen. The specimens were immersed in 2% methylene blue solution for 7 days, and tensile bond strength and microleakage were measured. The results were as follows: 1. Significant negative correlation was found between bond strengths and micro leakage values. Hence, higher bond strengths seem to be associated with lower microleakage, and vice versa (r=-0 50, p<0.05). 2. The Enamel/Wet group showed significantly higher bond strength than Enamel/Dry one, and Dentin/Wet group showed higher strength than Dentin/Dry one (p<0.05). 3. Microleakage was significantly less ill wet bonding than in dry one at dentin (p<0.05), however, there was no significant difference between wet and dry bonding at enamel (p>0.05).

  • PDF

Dentin bond strength of bonding agents cured with Light Emitting Diode (LIGHT EMITTING DIODE로 광조사한 상아질 접착제의 상아질 전단접착강도와 중합률에 관한 연구)

  • Kim Sun-Young;Lee In-Bog;Cho Byeong-Hoon;Son Ho-Hyun;Kim Mi-Ja;Seok Chang-In;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.504-514
    • /
    • 2004
  • This study compared the dentin shear bond strengths of currently used dentin bonding agents that were irradiated with an LED (Elipar FreeLight, 3M-ESPE) and a halogen light (VIP, BISCO). The optical characteristics of two light curing units were evaluated. Extracted human third molars were prepared to expose the occlusal dentin and the bonding procedures were performed under the irradiation with each light curing unit. The dentin bonding agents used in this study were Scotchbond Multipurpose (3M ESPE), Single Bond (3M ESPE), One-Step (Bisco), Clearfil SE bond (Kuraray), and Adper Prompt (3M ESPE), The shear test was performed by employing the design of a chisel-on-iris supported with a Teflon wall. The fractured dentin surface was observed with SEM to determine the failure mode. The spectral appearance of the LED light curing unit was different from that of the halogen light curing unit in terms of maximum peak and distribution. The LED LCU (maximum peak in 465 nm) shows a narrower spectral distribution than the halogen LCU (maximum peak in 487 nm). With the exception of the Clearfil SE bond (P < 0.05), each 4 dentin bonding agents showed no significant difference between the halogen light-cured group and the LED light-cured group in the mean shear bond strength (P > 0.05). The results can be explained by the strong correlation between the absorption spectrum of camphoroquinone and the narrow emission spectrum of LED.

The effect of the strength and wetting characteristics of Bis-GMA/TEGDMA-based adhesives on the bond strength to dentin (2,2-Bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane을 함유한 상아질 접착레진의 물성이 접착강도에 미치는 영향)

  • Park, Eun-Sook;Kim, Chang-Keun;Bae, Ji-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.139-148
    • /
    • 2011
  • Objectives: This study investigated the effect of the strength and wetting characteristics of adhesives on the bond strength to dentin. The experimental adhesives containing various ratios of hydrophobic, low-viscosity Bis-M-GMA, with Bis-GMA and TEGDMA, were made and evaluated on the mechanical properties and bond strength to dentin. Materials and Methods: Five experimental adhesives formulated with various Bis-GMA/Bis-MGMA/TEGDMA ratios were evaluated on their viscosity, degree of conversion (DC), flexural strength (FS), and microtensile bond strength (MTBS). The bonded interfaces were evaluated with SEM and the solubility parameter was calculated to understand the wetting characteristics of the adhesives. Results: Although there were no significant differences in the DC between the experimental adhesives at 48 hr after curing (p > 0.05), the experimental adhesives that did not contain Bis-GMA exhibited a lower FS than did those containing Bis-GMA (p < 0.05). The experimental adhesives that had very little to no TEGDMA showed significantly lower MTBS than did those containing a higher content of TEGDMA (p < 0.05). The formers exhibited gaps at the interface between the adhesive layer and the hybrid layer. The solubility parameter of TEGDMA approximated those of the components of the primed dentin, rather than Bis-GMA and Bis-M-GMA. Conclusions: To achieve a good dentin bond, a strong base monomer, such as Bis-GMA, cannot be completely replaced by Bis-M-GMA for maintaining mechanical strength. For compatible copolymerization between the adhesive and the primed dentin as well as dense cross-linking of the adhesive layer, at least 30% fraction of TEGDMA is also needed.

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

EFFECT OF ACID-TREATMENT ON DENTIN BONDING (산 처리가 상아질 접착에 미치는 영향)

  • Kim, Young-Kyong;Kim, Sung-Kyo;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of various acid treatments on dentin bonding. Freshly extracted human teeth were uprightly embedded in self curing acrylic resin, and their occlusal surfaces were grinded to expose flat dentin surfaces. The specimens were divided into 4 groups. Specimens of one group were not treated so as to be a control and those of the other three groups were threated with 10% polyacrylic acid, 10% phosphoric acid, and 10-3 solution(10% citric acid/3% ferric chloride) respectively. Primer, bonding resin and composite resin were applied over the treated dentin surfaces sequentially. All specimens were stored in $37^{\circ}C$ distilled water for 24 hours, then the tensile bond strength was measured and the treated dentin surfaces and fracured dentin surfaces were examined under a scanning electron microscope. The results were as follows: Bond strengths of acid-treated groups were higher than those of the untreated group. In the acid-treated groups, bond strength was found to be the highest in the 10-3 solution group followed by the 10% phosphoric acid group and the 10% polyacrylic acid group(P<0.01). On SEM examination of dentin surfaces, the untreated dentin surface showed a remaining smear layer and closed dentinal tubules. Dentin surfaces treated with 10 % polyacrylic acid showed a clean dentin surface without the smear layer, but showed remaining smear plugs in dentinal tubules. A dentin surface treated with 10% phosphoric acid or 10-3 solution showed open dentinal tubules without the smear layer or smear plugs. On SEM observation of the fractured dentin-resin interface, the untreated group showed that failure occurred in the smear layer. The group treated with 10% polyacrylic acid showed no resin tag remained in the dentinal tubules, but resin tags in the dentinal tubules were observed in the group treated with the 10% phosphoric acid or the 10-3 solution. On the failure mode examination, the higher the bond strength of the group, the higher the frequency of cohesive failure. The coefficient between bond strength and cohesive failure rate was 0.71.

  • PDF

THE EFFECT OF THE REMOVAL OF CHONDROITIN SULFATE ON BOND STRENGTH OF DENTIN ADHESIVES AND COLLAGEN ARCHITECTURE (비교원성 단백질이 상아질 접착제의 결합강도와 교원질의 형태에 미치는 영향)

  • Kim, Jong-Ryul;Park, Sang-Jin;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.211-221
    • /
    • 2010
  • Proteoglycan is highly hydrophilic and negatively charged which enable them attract the water. The objective of study was to investigate the effects of Proteoglycan on microtensile bond strength of dentin adhesives and on architecture of dentin collagen matrix of acid etched dentin by removing the chondroitin sulphate attached on Proteoglycan. A flat dentin surface in mid-coronal portion of tooth was prepared. After acid etching, half of the specimens were immersed in 0.1 U/mL chondroitinase ABC (C-ABC) for 48 h at $37^{\circ}C$, while the other half were stored in distilled water. Specimens were bonded with the dentin adhesive using three different bonding techniques (wet, dry and re-wet) followed by microtensile bond strength test. SEM examination was done with debonded specimen, resin-dentin interface and acid-etched dentin surface with/without C-ABC treatment. For the subgroups using wet-bonding or dry-bonding technique, microtensile bond strength showed no significant difference after C-ABC treatment (p > 0.05). Nevertheless, the subgroup using rewetting technique after air dry in the Single Bond 2 group demonstrated a significant decrease of microtensile bond strength after C-ABC treatment. Collagen architecture is loosely packed and some fibrils are aggregated together and relatively collapsed compared with normal acid-etched wet dentin after C-ABC treatment. Further studies are necessary for the contribution to the collagen architecture of noncollagenous protein under the various clinical situations and several dentin conditioners and are also needed about long-term effect on bond strength of dentin adhesive.

PHYSICAL PROPERTIES OF DIFFERENT SELF-ADHESIVE RESIN CEMENTS AND THEIR SHEAR BOND STRENGTH ON LITHIUM DISILICATE CERAMIC AND DENTIN (수종의 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도 비교)

  • Shin, Hye-Jin;Song, Chang-Kyu;Partk, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different self-adhesive resin cements and their shear bond strength on dentin and lithium disilicate ceramic and compare these result with that of conventional resin cement. For this study, four self-adhesive resin cements (Rely-X Unicem, Embrace Wetbond, Mexcem, BisCem), one conventional resin cement (Rely-X ARC) and one restorative resin composite (Z-350) were used. In order to evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. To evaluate the shear bond strength on dentin, each cement was adhered to buccal dentinal surface of extracted human lower molars. Dentin bonding agent was applied after acid etching for groups of Rely-X ARC and Z-350. In order to evaluate the shear bond strength on ceramic, lithium disilicate glass ceramic (IPS Empress 2) disks were prepared. Only Rely-X ARC and Z-350 groups were pretreated with hydrofluoric acid and silane. And then each resin cement was adhered to ceramic surface in 2 mm diameter. Physical properties and shear bond strengths were measured using a universal testing machine. Results were as follows 1. BisCem showed the lowest compressive strength, diametral tensile strength and flexural strength. (P<0.05) 2. Self-adhesive resin cements showed significantly lower shear bond strength on the dentin and lithium disilicate ceramic than Rely-X ARC and Z-350 (P<0.05) In conclusion, self-adhesive resin cements represent the lower physical properties and shear bond strength than a conventional resin cement.

THE EFFECT OF PRIMING ETCHED DENTIN WITH SOLVENT ON THE MICROTENSILE BOND STRENGTH OF HYDROPHOBIC DENTIN ADHESIVE (산 부식된 상아질에 대한 용매를 이용한 프라이밍이 소수성 상아질 접착제의 미세인장접착강도에 미치는 영향)

  • Park, Eun-Sook;Bae, Ji-Hyun;Kim, Jong-Soon;Kim, Jae-Hoon;Lee, In-Bog;Kim, Chang-Keun;Son, Ho-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Deterioration of long-term dentin adhesion durability is thought to occur by hydrolytic degradation within hydrophilic domains of the adhesive and hybrid layers. This study investigated the hypothesis that priming the collagen network with an organic solvent displace water without collapse and thereby obtain good bond strength with an adhesive made of hydrophobic monomers and organic solvents. Three experimental adhesives were prepared by dissolving two hydrophobic monomers, bisphenol-A-glycidylmethacrylate (Bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA), into acetone, ethanol or methanol. After an etching and rinsing procedure, the adhesives were applied onto either wet dentin surfaces (wet bonding) or dentin surfaces primed with the same solvent (solvent-primed bonding). Microtensile bond strength (MTBS) was measured at 48 hrs, 1 month and after 10,000 times of thermocycles. The bonded interfaces were evaluated using a scanning electron microscope (SEM). Regardless of bonding protocols, well-developed hybrid layers were observed at the bonded interface in most specimens. The highest mean MTBS was observed in the adhesive containing ethanol at 48 hrs. With solvent-primed bonding, increased MTBS tendencies were seen with thermo cycling in the adhesives containing ethanol or methanol. However, in the case of wet bonding, no increase in MTBS was observed with aging.