• Title/Summary/Keyword: 상수도 관망 최적설계

Search Result 42, Processing Time 0.023 seconds

Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems (상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가)

  • Lim, Seung Hyun;Lee, Chan Wook;Hong, Sung Jin;Yoo, Do Guen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.294-302
    • /
    • 2020
  • In a genetic algorithm, computer simulations are performed based on the natural evolution process of life, such as selection, crossover, and mutation. The genetic algorithm searches the approximate optimal solution by the parallel arrangement of Schema, which has a short definition length, low order, and high adaptability. This study examined the possibility of improving the efficiency of the optimal solution by considering the characteristics of the building block hypothesis, which are one of the key operating principles of a genetic algorithm. This study evaluated the efficiency of the optimization results according to the gene sequence for the implementation in solving problems. The optimal design problem of the water pipe was selected, and the genetic arrangement order reflected the engineering specificity by dividing into the existing, the network topology-based, and the flowrate-based arrangement. The optimization results with a flowrate-based arrangement were, on average, approximately 2-3% better than the other batches. This means that to increase the efficiency of the actual engineering optimization problem, a methodology that utilizes clear prior knowledge (such as hydraulic properties) to prevent such excellent solution characteristics from disappearing is essential. The proposed method will be considered as a tool to improve the efficiency of large-scale water supply network optimization in the future.

Optimal design and operation of water transmission system (상수도 송·배수시스템의 최적 설계 및 운영 모형 개발)

  • Choi, Jeongwook;Jeong, Gimoon;Kim, Kangmin;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1171-1180
    • /
    • 2018
  • Korea's water transmission system is operated by the nonpressure flow method that flows from highlands to lowlands due to the nature of Korea with many mountainous areas. In order to store water in the highlands, the water pumps are installed and operated. However, In this process, a lot of electrical energy is consumed. therefore, it is necessary to minimize the energy consumption by optimizing the size and operation schedule of the water pumps. The optimal capacity and operation method of the water pump are affected by the size of the tank (distributing reservoir). Therefore, in order to economically design and operate the water transmission system, it is reasonable to consider both the construction cost of the water pump and the tank and the long-term operation cost of the water pump at the step of determining the scale of the initial facilities. In this study, the optimum design model was developed that can optimize both the optimal size of the water pump and the tank and the operation scheduling of the water pump by using the genetic algorithm (GA). The developed model was verified by applying it to the water transmission systems operated in Korea. It is expected that this study will help to estimate the optimal size of the water pump and the tank in the initial design of the water transmission system.

Development of Optimal Network Model for Conjunctive Operation of Water Supply System with Multiple Sources (다수원 상수도시스템 연계운영을 위한 최적 네트워크 모형 구축)

  • Ryu, Tae-Sang;Ha, Sung-Ryong;Cheong, Tae-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.1001-1013
    • /
    • 2011
  • Development of an optimal water supply system considering water quantity, quality, and economical efficiency is needed to decide optimal available area by combine water supply systems in overlapped area where are more than 2 water sources. The EPAnet and the KModSim were coupled to develop optimal network model. The developed network model was calibrated by measured data from water supply system in Geoje City, Korea in 2007 which have three water sources such as Sadeong booster pumping station, Guchun dam reservoir and Yoncho dam reservoir. The optimum network model was validated by operating results of 2011 to assess the economically optimized service area and optimal pump combination under the given hydraulic operating rules developed in this study. The developed model can be applied into designing water supply systems and operating rules for the conjunctive operation since the model can give the optimal solution satisfied with water quantity, economical efficiency and quality.

Optimal Design of Water Supply System using Multi-objective Harmony Search Algorithm (Multi-objective Harmony Search 알고리즘을 이용한 상수도 관망 다목적 최적설계)

  • Choi, Young-Hwan;Lee, Ho-Min;Yoo, Do-Guen;Kim, Joong-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.293-303
    • /
    • 2015
  • Optimal design of the water supply pipe network aims to minimize construction cost while satisfying the required hydraulic constraints such as the minimum and maximum pressures, and velocity. Since considering one single design factor (i.e., cost) is very vulnerable for including future conditions and cannot satisfy operator's needs, various design factors should be considered. Hence, this study presents three kinds of design factors (i.e., minimizing construction cost, maximizing reliability, and surplus head) to perform multi-objective optimization design. Harmony Search (HS) Algorithm is used as an optimization technique. As well-known benchmark networks, Hanoi network and Gyeonggi-do P city real world network are used to verify the applicability of the proposed model. In addition, the proposed multi-objective model is also applied to a real water distribution networks and the optimization results were statistically analyzed. The results of the optimal design for the benchmark and real networks indicated much better performance compared to those of existing designs and the other approach (i.e., Genetic Algorithm) in terms of cost and reliability, cost, and surplus head. As a result, this study is expected to contribute for the efficient design of water distribution networks.

Optimal Design of Water Distribution Networks using the Genetic Algorithms: (I) -Cost optimization- (Genetic Algorithm을 이용한 상수관망의 최적설계: (I) -비용 최적화를 중심으로-)

  • Shin, Hyun-Gon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.70-80
    • /
    • 1998
  • Many algorithms to find a minimum cost design of water distribution network (WDN) have been developed during the last decades. Most of them have tried to optimize cost only while satisfying other constraining conditions. For this, a certain degree of simplification is required in their calculation process which inevitably limits the real application of the algorithms, especially, to large networks. In this paper, an optimum design method using the Genetic Algorithms (GA) is developed which is designed to increase the applicability, especially for the real world large WDN. The increased to applicability is due to the inherent characteristics of GA consisting of selection, reproduction, crossover and mutation. Just for illustration, the GA method is applied to find an optimal solution of the New York City water supply tunnel. For the calculation, the parameter of population size and generation number is fixed to 100 and the probability of crossover is 0.7, the probability of mutation is 0.01. The yielded optimal design is found to be superior to the least cost design obtained from the Linear Program method by $4.276 million.

  • PDF

Development of Improved Clustering Harmony Search and its Application to Various Optimization Problems (개선 클러스터링 화음탐색법 개발 및 다양한 최적화문제에 적용)

  • Choi, Jiho;Jung, Donghwi;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.630-637
    • /
    • 2018
  • Harmony search (HS) is a recently developed metaheuristic optimization algorithm. HS is inspired by the process of musical improvisation and repeatedly searches for the optimal solution using three operations: random selection, memory recall (or harmony memory consideration), and pitch adjustment. HS has been applied by many researchers in various fields. The increasing complexity of real-world optimization problems has created enormous challenges for the current technique, and improved techniques of optimization algorithms and HS are required. We propose an improved clustering harmony search (ICHS) that uses a clustering technique to group solutions in harmony memory based on their objective function values. The proposed ICHS performs modified harmony memory consideration in which decision variables of solutions in a high-ranked cluster have higher probability of being selected than those in a low-ranked cluster. The ICHS is demonstrated in various optimization problems, including mathematical benchmark functions and water distribution system pipe design problems. The results show that the proposed ICHS outperforms other improved versions of HS.

Optimal Design of Water Distribution Networks using the Genetic Algorithms:(II) -Sensitivity Analysis- (Genetic Algorithm을 이용한 상수관망의 최적설계: (II) -민감도 분석을 중심으로-)

  • Shin, Hyun-Gon;Park, Heekyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.50-58
    • /
    • 1998
  • Genetic Algorithm (GA) consists of selection, reproduction, crossover and mutation processes and many parameters including population size, generation number, the probability of crossover (Pc) and the probability of mutation (Pm). Determining values of the parameters is found critical in the whole optimization process and a sensitivity analysis with them seems mandatory. This paper tries to demonstrate such importance of sensitivity analysis of GA using an example water supply tunnel network of the New York City. For optimization of the network with GA, Pc and Pm vary from 0.5 to 0.9 by an increment of 0.1 and from 0.01 to 0.05 by an increment of 0.01, respectively, while fixing both the population size and the generation number to 100. This sensitivity analysis results in an optimum design of 22.3879 million dollars at the values of 0.8 and 0.01 for Pc and Pm, respectively. In addition, the probability of recombination (Pr) is introduced to check its applicability in the GA optimization of water distribution network. When Pr is 0.05 with the same values of Pc and Pm as above, the optimum design costs 20.9077 million dollars. This is lower than the cost of 22.3879 million dollars for the case of not using Pr by 6.6%. These results indicate that conducting a sensitivity analysis with parameter values and using Pr are useful in the optimization of WDN.

  • PDF

Methodology for optimum design of surge relief valve in water distribution system (상수관망에서 서지 릴리프밸브의 최적 설계 방법론)

  • Kim, Hyunjun;Hur, Jisung;Kim, Geonji;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Surge pressure is created by rapid change of flow rate due to operation of hydraulic component or accident of pipeline. Proper control of surge pressure in distribution system is important because it can damage pipeline and may have the potential to degrade water quality by pipe leakage due to surge pressure. Surge relief valve(SRV) is one of the most widely used devices and it is important to determine proper parameters for SRV's installation and operation. In this research, determining optimum parameters affecting performance of the SRV were investigated. We proposed the methodology for finding combination of parameters for best performance of the SRV. Therefore, the objective function for evaluate fitness of candidate parameters and surge pressure simulation software was developed to validate proposed parameters for SRV. The developed software was integrated into genetic algorithm(GA) to find best combination of parameters.

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

Development of Copycat Harmony Search : Adapting Copycat Scheme for the Improvement of Optimization Performance (모방 화음탐색법의 개발 : 흉내내기에 의한 최적화 성능 향상)

  • Jun, Sang Hoon;Choi, Young Hwan;Jung, Donghwi;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.304-315
    • /
    • 2018
  • Harmony Search (HS) is a recently developed metaheuristic algorithm that is widely known to many researchers. However, due to the increasing complexity of optimization problems, the optimal solution cannot be efficiently found by HS. To overcome this problem, there have been many studies that have improved the performance of HS by modifying the parameter settings and incorporating other metaheuristic algorithms. In this study, Copycat HS (CcHS) is suggested, which improves the parameter setting method and the performance of searching for the optimal solution. To verify the performance of CcHS, the results were compared to those of HS variants with a set of well-known mathematical benchmark problems. The effectiveness of CcHS was proven by finding final solutions that are closer to the global optimum than other algorithms in all problems. To analyze the applicability of CcHS to engineering optimization problems, it was applied to a design problem for Water Distribution Systems (WDS), which is widely applied in previous research. As a result, CcHS proposed the minimum design cost, which was 21.91% cheaper than the cost suggested by simple HS.