Journal of the Microelectronics and Packaging Society
/
v.30
no.4
/
pp.69-78
/
2023
With the rapid growth of artificial intelligence, the demand for semiconductors is enormously increasing everywhere. To ensure the manufacturing quality and quantity simultaneously, the importance of automatic defect detection during the packaging process has been re-visited by adapting various deep learning-based methodologies into automatic packaging defect inspection. Deep learning (DL) models require a large amount of data for training, but due to the nature of the semiconductor industry where security is important, sharing and labeling of relevant data is challenging, making it difficult for model training. In this study, we propose a new framework for securing sufficient data for DL models with fewer computing resources through a divide-and-conquer approach. The proposed method divides high-resolution images into pre-defined sub-regions and assigns conditional labels to each region, then trains individual sub-regions and boundaries with boundary loss inducing the globally coherent and seamless images. Afterwards, full-size image is reconstructed by combining divided sub-regions. The experimental results show that the images obtained through this research have high efficiency, consistency, quality, and generality.
This paper is concerned with the mesh segmentation problem that can be applied to diverse applications such as texture mapping, simplification, morphing, compression, and shape matching for 3D mesh models. The mesh segmentation is the process of dividing a given mesh into the disjoint set of sub-meshes. We propose a method for segmenting meshes by simultaneously reflecting global and local geometric characteristics of the meshes. First, we extract sharp vertices over mesh vertices by interpreting the curvatures and convexity of a given mesh, which are respectively contained in the local and global geometric characteristics of the mesh. Next, we partition the sharp vertices into the $\kappa$ number of clusters by adopting the $\kappa$-means clustering method [29] based on the Euclidean distances between all pairs of the sharp vertices. Other vertices excluding the sharp vertices are merged into the nearest clusters by Euclidean distances. Also we implement the proposed method and visualize its experimental results on several 3D mesh models.
Kim, Jong-Hyun;Kim, Myung-Keun;Kim, Jae-Hong;Bae, Hae-Young
Annual Conference of KIPS
/
2002.11c
/
pp.1871-1874
/
2002
최근 인터넷 환경에서 지리 정보 서비스를 제공받으려는 사용자들의 지속적인 증가로 인해 저비용의 여러 개의 단일 노드를 고속의 네트워크로 연결하여 고성능을 제공하는 클러스터 기반의 공간 데이터베이스에 대한 연구가 활발하게 진행되고 있다. 이러한 공간 데이터베이스 클러스터에서 사용자가 요구한 공간 질의를 빠르게 처리하기 위해서는 고비용의 공간 조인 연산을 효율적으로 처리하기 위한 기법이 요구된다. 본 논문에서는 비공유 공간 데이터베이스 클러스터 환경하에서 공간 조인 연산 수행 시 효율적인 병렬 처리를 위한 영역 분할 기법 및 병렬 공간 조인 기법을 제안한다. 기존의 병렬 공간 데이터베이스 시스템에서의 분할 기반 병렬 공간 조인 기법들은 병렬로 수행할 작업 분배 및 할당과 분할 경계선 상에 존재하는 공간 객체들에 대한 중복 조인 연산 및 중복 결과 제거 등의 추가적인 연산을 해야 한다는 문제점들이 있다. 제안된 기법은 공간 릴레이션들을 일정 영역들로 분할하여 비공유 공간 데이터베이스 클러스터의 각 노드에서 중복없이 저장, 관리하도록 하며 분할 영역의 경계선 상에 위치하는 공간 데이터에 대해서만 중복 저장을 허용하여 병렬 공간 조인 연산 시 누락되는 공간 데이터가 없도록 한다. 본 기법은 공간 조인 연산 시 병렬 처리를 위한 별도의 작업 할당 과정을 거치지 않고 각 노드에서 병렬적으로 공간 조인 연산을 수행하며, 분할 경계선 상에 존재하는 공간 객체들은 여과 과정을 거쳐 한번만 공간 조인이 수행되므로 중복 결과들을 제거하기 위한 별도의 연산이 필요없는 특징을 갖는다. Ad Hoc망의 위상변화에 대한 적응성을 높일 수 있도록 한다. SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이
본 논문은 다중 Tier 상에서 온라인 서비스 대량 데이타 처리를 빠르고 정확하게 클라이언트에 전달하는 기법을 제안한다. Tier 가 많은 온라인 서비스상에서 대량의 데이타를 빠르게 처리하는 데에는 많은 어려움이 있다. Tier 간 지연 시간의 최소화, 네트워크 대역폭를 고려한 트란잭션(Transaction)의 적절한 분할 통신, 이 기종간의 데이타 변환 시 처리속도 개선 등이 해결해야 할 주요한 요건이라고 할 수 있다. 하지만 이러한 문제들이 해결된다고 해서 괄목할 만한 성능의 개선은 쉽게 나타나지 않는다. 그 이유는 바로 Partial Query에 의한 데이타 통신이 꾸준히 반복 발생하기 때문이다. 온라인 서비스의 특성상 대량 데이타는 많은 사용자의 효율적인 트란잭션 처리를 위하여 분할(Partial) 처리되어 통신하는 방식을 기준으로 사용하고 있다. 이러한 방식을 준수 하기 위해서는 데이타 사이즈에 비례하는 반복의 증가가 불가피하다. 그래서 반복 횟수를 줄이는데 포커스를 두고 온라인 서비스 대량 데이타 처리에 대한 성능 데스트를 진행한 결과 반복이 최소화 될수록 성능은 최대한으로 유지되며, 다른 어떤 기술적인 요소를 개선하는 것보다 큰 효과를 볼 수 있음을 알 수 있었다.
The relative biological effectiveness has been measured for the biological characterization of $p^+(50.5\;MeV)$ Be neutron of KCCH-Cyclotron prior to clinical application. Measured RBE of mouse jejunal crypt cell in single whole body irradiation was 2.8. This RBE value is changed differently in different biologic systems such as mouse jejunal crypt cells, intestine and bone marrow in different irradiation method, so that in fractionated irradiation RBE is variable to the different fraction size and total dose, and also variable to the number of fractions.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.927-930
/
2010
Recently, continuous k-nearest neighbor query(CkNN) which is defined as a query to find the nearest points of interest to all the points on a given path is widely used in the LBS(Location Based Service) and ITS(Intelligent Transportation System) applications. It is necessary to acquire results quickly in the above applications and be applicable to spatial network databases. This paper proposes a new method to search nearest POIs(Point Of Interest) for moving query objects on the spatial networks. The method produces a set of split points and their corresponding k-POIs as results. There is no order between the POIs. The analysis show that the proposed method outperforms the existing methods.
Journal of the Korean Association of Geographic Information Studies
/
v.24
no.3
/
pp.73-82
/
2021
Rural roads are the significant infrastructure for developing and managing the rural areas, hence the utilization of the remote sensing datasets for managing the rural roads is necessary for expanding the rural transportation infrastructure and improving the life quality of the rural residents. In this research, the two different methods such as image classification and image segmentation were compared for mapping the rural road based on the given high-resolution satellite image acquired in the rural areas. In the image classification method, the deep learning with the multiple neural networks was employed to the given high-resolution satellite image for generating the object classification map, then the rural roads were mapped by extracting the road objects from the generated object classification map. In the image segmentation method, the multiresolution segmentation was employed to the same satellite image for generating the segment image, then the rural roads were mapped by merging the road objects located on the rural roads on the satellite image. We used the 100 checkpoints for assessing the accuracy of the two rural roads mapped by the different methods and drew the following conclusions. The image segmentation method had the better performance than the image classification method for mapping the rural roads using the give satellite image, because some of the rural roads mapped by the image classification method were not identified due to the miclassification errors occurred in the object classification map, while all of the rural roads mapped by the image segmentation method were identified. However some of the rural roads mapped by the image segmentation method also had the miclassfication errors due to some rural road segments including the non-rural road objects. In future research the object-oriented classification or the convolutional neural networks widely used for detecting the precise objects from the image sources would be used for improving the accuracy of the rural roads using the high-resolution satellite image.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.139-142
/
1999
본 연구는 폐쇄된 임의의 공간상에서 2개의 마이크로폰 어레이를 이용 수신된 2개 신호의 도착 시간차를 계산하여 응원의 방향 각을 추정하는 새로운 알고리듬을 제안한다. 제안된 MSCPSP 알고리듬은 기존의 CPSP 알고리듬을 개선한것으로, 마이크로폰에 수신된 2개의 입력신호에 대해 서브밴드 필터 뱅크를 이용하여 대역 분할하고 각 서브밴드 대역에서 구해지는 신호 대 잡음비(SNH)를 대역별 CPSP 결과에 가중치로 제공한다. 이러한 대역 분할 가중방식은 잡음의 영향을 각 대역으로 한정 분산시켜 보다 정확한 지연 시간 추정을 가능하게 한다. 제안된 알고리듬의 성능을 입증하기 위해 기존의 CPSP와 MSCPSP 알고리듬의 컴퓨터 모의 실험을 수행하였으며, 실험 결과 제안된 MSCPSP의 우수함을 볼 수 있었다.
이차원 분할자료에 대해서 행과 열의 관계를 저차원상에 시각적으로 표현하는 탐색적대응분석에 대하여 붓스트랩방법의 사용가능성을 살펴보았다. 기존의 탐색적 면만이 강조되어 왔던 대응분석에서 좌표점의 변이와 좌표점간의 거리에 대한 통계적 추론을 붓스트랩방법으로 해결할 수 있음을 보이고 또한 좌표축의 설명력에 대하여 붓스트랩신뢰구간의 포함확률의 일치성을 모의실험을 통해 제시하였다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.505-509
/
2004
본 논문에서는 비디오 스트림 서버에서 의미 기반 검색을 가능하게 하기 위하여 대용량 스트림 데이터를 효과적으로 표현하고 저장하는 기법을 제시한다. 비디오 스트림 내의 각 프레임을 다차원 공간상의 점으로 사상함으로써 비디오 스트림은 다차원 시퀀스(multidimensional sequence)로 표현되고, 이 시퀀스는 다시 비디오 세그먼트로 분할된다. 분할된 세그먼트로부터 정적인 특성과 연속된 프레임의 움직임을 나타내는 트랜드 벡터(trend vector)등의 의미 정보를 추출하여 모델링 함으로서 스트림 데이터를 효과적으로 표현한다. 또한 제안된 기법은 효율적인 검색을 위하여 비디오 세그먼트를 인덱싱하고 저장하는 방법을 제공함으로써 공간 사용의 효율성을 높이고 신속한 검색을 가능하게 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.