• Title/Summary/Keyword: 상변화재료

Search Result 95, Processing Time 0.029 seconds

A study on phase change characteristics of $Ge_2Sb_2Te_5$ thin films for phase change random access memory (상변화 메모리를 위한 $Ge_2Sb_2Te_5$ 박막의 상변화 특성 연구)

  • Beak, Seung-Cheol;Song, Ki-Ho;Han, Kwang-Min;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.70-70
    • /
    • 2009
  • Si 도핑한 $Ge_2Sb_2Te_5$ 박막은 비정질상에서의 열적 안정성증가, fcc에서 hex상으로의 상전이 억제, 활성화 에너지 증가 등의 특성을 보인다. 본 연구에서는 Si 도핑에 의한 $Ge_2Sb_2Te_5$ 박막의 전기적 그리고 구조적인 특성에 관한 실험을 진행하였다. 실험에 사용된 Si 도핑 $Ge_2Sb_2Te_5$ 박막은 Si 기판 위에 radio frequency power supply를 사용해 Si과 $Ge_2Sb_2Te_5$ 타겟을 co-sputtering하여 증착하였다. Si의 sputtering 파워를 달리하여 실리콘의 농도를 다르게 증착 하였고 X-ray photoelectron spectroscopy (XPS)를 사용하여 박막의 Si 농도를 측정하였다. 증착된 박막은 질소 분위기 하에서 $5\;^{\circ}C$/min으로 열처리 하여 여러 온도와 Si 농도에서의 박막의 특성을 측정하였다. 열처리 전, 후의 박막은 X-ray diffraction (XRD) 분석을 통하여 각각의 온도에서의 구조적 특성을 분석하였다. 열처리 온도에 따르는 필름의 전기적 특성 파악을 위해서 four-point probe를 이용하여 박막의 면저항을 측정하였고 그 값은 3 회 이상 측정하여 평균값을 사용하였다. Nano-pulse scanner를 사용하여 다양한 파워범위와 펄스폭 범위에서의 박막의 상변화에 따른 반사도 차이를 측정하여 각 조성에서의 비정질-결정질상 변화속도를 분석하였다.

  • PDF

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology (3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정)

  • Shin, Dong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.892-898
    • /
    • 2008
  • 3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.

Crystallization Properites of $Te_x(Sb_{85}Ge_{15})_{100-x}$ Thin Film as Phase Change Optical Recording Media ($Te_x(Sb_{85}Ge_{15})_{100-x}$ 상변화 광기록 박막의 결정화 특성)

  • 김홍석;이현용;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.314-320
    • /
    • 1998
  • In this study, we have investigated crystallization properties of $Te_x(Sb_{85}Ge_{15})_{100-x}$ (x=0.3, 0.5, 1.0) thin films prepared by thermal evaporation. The change of reflectance according to phase change from amorphous to crystalline phases with annealing and exposure of diode laser is measured b the n&k analyzer and the surface morphology between amorphous and crystalline phase is analyzed by SEM and AFM. The difference in reflectance($\DeltaR$) between amorphous and crystalline phase appears approximately 20% at the diode laser wavelength, 780nm in all prepared films. Especially, the reflectance difference,$\DeltaR$ comes up to about 30% in $Te_{0.5}(Sb_{85}Ge_{15})_{99.5}$ thin film. Also, amorphous-to-crystalline phase change is observed in all prepared films. As a result of the measurement of the reflectance using diode laser, the reflectance is increased in proportion to the laser power and exposure time in all films. As a result of observing each film with the SEM and AFM, the surface morphology of the annealed and the exposed films are evidently increased than those of as-deposited films. The fast crystallization is occurred by increasing in Te content. Therefore, we conclude that the $Te_{0.5}(Sb_{85}Ge_{15})_{99.5}$ and $Te_1(Sb_{85}Ge_{15})_{99}$ thin films can be evaluated as an attractive optical recording medium with high contast ratio and fast erasing time due to crystallization.

  • PDF

The Characteristics of Te-light doped S $b_{85}Ge_{15}$Thin Film as Phase Change Optical Recording Media (Te 을 미세 도핑한 S $b_{85}Ge_{15}$ 상변화 기록 박막의 특성)

  • 김종기;김홍석;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.20-22
    • /
    • 1997
  • In ours study, we investigated the various properties in Te-light doped $Sb_{85}$G $e_{15}$ thin films such as the change of reflectance and transmittance according to phase change from amorphous to crystalline states In all films the transmittance was decreased, but the reflectance was increased by annealing. Particularly, the reflectance between as- deposited state and annealed state showed the largest change in the T $e_{0.5}$($Sb_{85}$G $e_{15}$ )$_{99.5}$ thin film at 780nm, which was about 40% in as-deposited state and about 70% in annealed state. Therefore, it might be considered that the T $e_{0.5}$($Sb_{85}$G $e_{15}$ )$_{99.5}$ thin film is recording medium showing to a good optical properties if it is used to optical recording of the phase change type. change type.ype.

  • PDF

The Electrical and Thermal Properties of Phase Change Memory Cell with Bottom Electrode (하부전극에 따른 상변화 메모리 셀의 전기 및 발열 특성)

  • Jang, Nak-Won;Kim, Hong-Seung;Lee, June-Key;Kim, Do-Heyoung;Mah, Suk-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.103-104
    • /
    • 2006
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the reset current and temperature profile of PRAM cells with bottom electrode were calculated by the numerical method.

  • PDF

Electrical characteristic of Phase-change Random Access Memory with improved bottom electrode structure (하부전극 구조 개선에 의한 상변화 메모리의 전기적 특성)

  • Kim, Hyun-Koo;Choi, Hyuk;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.69-70
    • /
    • 2006
  • A detailed Investigation of cell structure and electrical characteristic in chalcogenide-based phase-change random access memory(PRAM) devices is presented. We used compound of Ge-Sb-Te material for phase-change cell. A novel bottom electrode structure and manufacture are described. We used heat radiator structure for improved reset characteristic. A resistance change measurement is performed on the test chip. From the resistance change, we could observe faster reset characteristic.

  • PDF

A Study of Phase-change Properties of Sb-doped Ag/Ge-Se-Te thin films (Sb-doped Ag/Ge-Se-Te 박막의 상변화 특성 연구)

  • Nam, Ki-Hyun;Jeong, Won-Kook;Park, Ju-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.347-347
    • /
    • 2010
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

The study about phase phase change material at nano-scale using c-AFM method (c-AFM 기술을 이용한 나노급 상변화 소자 특성 평가에 대한 연구)

  • Hong, Sung-Hoon;Lee, Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.57-57
    • /
    • 2010
  • In this study, nano-sized phase change materials were evaluated using nanoimprint lithography and c-AFM technique. The 200nm in diameter phase change nano-pillar device of GeSbTe, AgInSbTe, InSe, GeTe, GeSb were successfully fabricated using nanoimprint lithography. And the electrical properties of the phase change nano-pillar device were evaluated using c-AFM with pulse generator and voltage source.

  • PDF

고상합성으로 제조된 MnSi1.73:Crx의 열전특성

  • Sin, Dong-Gil;Yu, Sin-Uk;Ju, Gyeong-Seok;Song, Gwon-Min;Kim, Il-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.451-451
    • /
    • 2014
  • 중고온 열전재료로서의 응용 가능성이 높은 HMS (higher manganese silicide)는 높은 제백계수, 낮은 전기저항, 높은 산화 저항성뿐만 아니라 구성 원소가 풍부하며 친환경적인 열전재료이다. HMS는 주로 용해/응고법, 단결정 성장법에 의해 합성되지만, 구조적인 불균질성 및 많은 합성 에너지를 소비하는 단점이 있다. 또한 진성 HMS는 비교적 낮은 열전특성을 나타내기 때문에 도핑에 의한 열전특성의 개선이 필요하다. 본 연구에서는 HMS의 한 종류인 MnSi1.73에 Cr을 도핑한 화합물 MnSi1.73:Crx (x=0, 0.005, 0.01, 0.02, 0.03)를 고상반응(solid state reaction)과 진공 열간압축성형(hot pressing)을 통해 제조하였다. XRD와 Rietveld refinement를 통해 상변화 및 상분율을 분석하였고, 323~823 K까지 전기적 및 열적 특성을 측정하여 열전 성능지수(ZT)를 평가하였다.

  • PDF

A study on characteristics of crystallization according to changes of top structure with phase change memory cell of $Ge_2Sb_2Te_5$ ($Ge_2Sb_2Te_5$ 상변화 소자의 상부구조 변화에 따른 결정화 특성 연구)

  • Lee, Jae-Min;Shin, Kyung;Choi, Hyuck;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.80-81
    • /
    • 2005
  • Chalcogenide phase change memory has high performance to be next generation memory, because it is a nonvolatile memory processing high programming speed, low programming voltage, high sensing margin, low consumption and long cycle duration. We have developed a sample of PRAM with thermal protected layer. We have investigated the phase transition behaviors in function of process factor including thermal protect layer. As a result, we have observed that set voltage and duration of protect layer are more improved than no protect layer.

  • PDF