• Title/Summary/Keyword: 삼차원 형상측정

Search Result 34, Processing Time 0.024 seconds

3-Dimensional Profile Measurement of Free-Formed Surfaces by Slit Beam Scanning Topography (슬릿광 주사방법에 의한 자유곡면의 삼차원형상 측정)

  • 박현구;김승우;박준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1202-1207
    • /
    • 1993
  • An optical method of slit beam scanning topography is presented for the 3-dimensional profile measurement of free-formed surfaces. A slit beam of laser is projected in a scanning mode and its illuminated trajectory on the object is captured by using a CCD camera. The 3-dimensional coordinates of the trajectory is then computed by using the given geometry between the slit beam and the camera, so that the whole surface profile of the object can be obtained in a successive manner. Detailed optical principles are described with special emphasis to lateral are discussed to demonstrate the measuring performances of the slit beam scanning topography proposed in this study.

A Study on the Compensation of Thermal Errors for Phase Measuring Profilometry (PMP 형상 측정법의 열 변위 보정에 관한 연구)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.598-603
    • /
    • 2019
  • Three-dimensional shape measurement technology is used in various industries. Among them, optical three-dimensional shape measurement techniques based on the optical trigonometry are mainly used in the field of semiconductor product inspection, where large quantities of three-dimensional shape measurements are made daily in factories and fine measurements are also required. The light source and the drive circuit, which are components of three-dimensional measurement equipment based on this optical trigonometry, produce heat generated by prolonged operation, and may be exposed to conditions where the ambient temperature is not constant, resulting in temperature-induced measurement errors. In this study, the compensation method of the Thermal Errors for Phase Measuring Profilometry is proposed. Three-Dimensional Shape Measurement Equipment based on Phase Measuring Profilometry is implemented to measure the height of an object and ambient temperature for 10 Hours, and a regression line was obtained line by making simple linear regression using measured temperature and height values. This regression line was used to correct the error of the height measurement according to the temperature, and thermal error was from 139.88 um(Micrometer) to 13.12 um.

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

모아레 광간섭에 의한 금형 형상의 삼차원 자동측정과 CAD/CAM과의 연계

  • 김승우
    • Journal of the KSME
    • /
    • v.32 no.2
    • /
    • pp.175-183
    • /
    • 1992
  • 모아레토포그라피를 이용한 금형제작을 위한 클레이모형(clay model)의 3차원 형상측정을 위한 방법이 제시되었다. 그리고 모아레무늬를 해석하는 방법이 제시되어 클레이모형의 형상을 측정 하였고 디지털영상처리기법을 사용하는 일련의 과정을 통해 3차원 형상을 재현하였다. IBM PC/386과 CCD 카메라를 사용하여 실험한 결과 0.005mm의 분해능을 가지며 측정속도가 5분 가량이 소요되었다. 따라서 광학적방법이 접촉식 디지타이징을 이용하였을 경우 발생하는 많은 문제점 등을 효율적으로 보완할 수 있다. 그리고 품질검사를 자동화할 수 있는 방법을 제시하 였고 기존의 모아레토포그라피가 가지는 어려움을 극복하기 위하여 새로운 방법인 주사식 모아 레토포그라피를 제시하였다.

  • PDF

Phase error compensation for three-dimensional shape measurement based on a phase-shifting method (위상천이법을 이용한 삼차원 형상측정에서 위상오차 보정)

  • Park, Yoon-Chang;Ahn, Seong-Joon;Kang, Moon-Ho;Kwon, Young-Chul;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3023-3030
    • /
    • 2009
  • In this paper, a prediction and compensation method for the error in the phase measured by using the proportionality between two wavelengths in the TW-PMP (Two-wavelength Phase Measuring Profilometry) is proposed and experimental results are shown to verify the usefulness of the proposed method. For sample object, firstly, a phase-shifting with a quite large number of steps is adopted in measurement, compared with the conventional phase-shifting method, secondly, a 3-3 step phase-shifting method is used to measure the same object which is applied to high-speed 3D shape measurement, and then, measured results from these two phase-shifting methods are compared to calculate measurement noises. From the experimental results applying the proposed compensation method to the measured beat phase and absolute phase, it has proven that noises are decreased by 90% and 17.2% for each case.

Automatic Measurement of 3-Dimensional Profile of Free-Formed Surfaces by Using Touch-Trigger Probes (접촉감지프로브를 이용한 자유곡면의 삼차원형상 자동측정)

  • 송창규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.407-415
    • /
    • 1993
  • This report presents an automatic measurement method of 3-dimensional profiles of free-formed surfaces, by using a touch a touch-trigger contact probe along with a conventional coordinate measuring machine. The method proceeds in three steps; The surface profile under consideration is traced by the probe in an automatic manner, and then its measured data is compensated by considering the actual probe radius. Finally the compensated data is rearranged in the form suitable for the further processings of CAD/CAM applications. Some experimental results are discussed to verify the validity of the method suggested in this study.

Precision Profile Measurement of Mirror Surfaces by Phase Shifting Interferometry (광위상간섭에 의한 경면의 정밀 형상측정)

  • 김승우;공인복;민선규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1530-1535
    • /
    • 1992
  • An optical method of phase shifting interferometry is presented for the 3-dimensional profile measurement of mirror surfaces with nanometer resolution. A series of optical interferometric fringes are generated by comparing the surface to be measured with a reference flat. The fringes are captured by a CCD camera and then analyzed to obtain actual surface profile. Detailed principles are described along with necessary image processing algorithms. finally, several measurement examples are discussed which were performed on lapped surfaces, hard discs, and semiconductor wafers.

3D Simulation of Thin Film using Contour Analysis of Interference Fringe Image and Interpolation Method (간섭무늬 영상 등고선 해석과 보간법을 이용한 박막의 삼차원 정보 형상화)

  • Kim, Jin-Hyoung;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • In this paper we proposes a new framework to obtain 3D shape information of thin film rapidly. The conventional equipments based on reflectometry are not suitable for obtaining 3D overall shape information of thin film rapidly since they require more than 30 minutes to measure the absolute thickness for 170 points. The proposed framework is based on an image analysis method that extracts contour lines from interference fringes images using Canny edge detector. The absolute thickness for contour lines are measured and then a height map from the contour lines is obtained by interpolation using Borgefors distance transformation. The extracted height map is visualized using the DirectX 3D terrain rendering method. The proposed framework can provide 3D overall shape information of thin film in about 5 minutes since relatively small number of real measurement for contour lines is required.

3-D Optimal Disposition of Direction Finders (방향탐지장비의 삼차원 최적 배치)

  • Lee, Ho-Joo;Kim, Chang-Geun;Kang, Sung-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.765-772
    • /
    • 2011
  • In this paper, a simulation-based method is presented to dispose direction finders in three dimensional space for locating targets using the directional data. A direction finder(DF) is a military weapon that is used to find locations of targets that emit radio frequencies by operating two or more DFs simultaneously. If one or more DFs are operated in the air, the accuracy of location estimation can be enhanced by disposing them in a better configuration. By extending the line method, which is a well-known algorithm for 2-D location estimation, into 3-D space, the problem of 3-D location estimation is defined as an nonlinear programming form and solved analytically. Then the optimal disposition of DFs is considered with the presented method in which methods of simulation and search technique are combined. With the suggested algorithm for 3-D disposition of DFs, regions in which targets exist can be effectively covered so that the operation effect of DF be increased.

System Design and Camera Calibration of Slit Beam Projection for Maximum Measuring Accuracy (슬릿광 3차원 형상측정에서 측정분해능 최적화를 위한 시스템설계 및 카메라보정)

  • 박현구;김명철;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1182-1191
    • /
    • 1994
  • This paper presents an enhanced method of slit beam projection intended for the rapid measurement of 3-dimensional surface profiles of dies and molds. Special emphasis is given to optimizing the design of optical system so that the measuring accuracy can be maximized by adopting two-plane camera calibration together with sub-pixel image processing techniques. Finally, several measurement examples are discussed to demonstrate that an actual measuring accuracy of $\pm$ 0.2 mm can be achieved over the measuring range of 500 mm{\times}300mm{\times}200mm$.