• Title/Summary/Keyword: 삼차원 합성곱 신경망

Search Result 1, Processing Time 0.014 seconds

Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images (삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측)

  • Hangil You;Gun Jin Yun
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.40-45
    • /
    • 2024
  • In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs.